ACKNOWLEDGEMENTS

City of Atlanta

The Honorable Mayor Kasim Reed

Atlanta City Council

Cesear Mitchell, President
Carla Smith, District 1
Kwanz Hall, District 2
Ivory Lee Young, District 3
Cleta Winslow, District 4
Natalyn Archibong, District 5
Alex Wan, District 6
Howard Shook, District 7
Yolanda Adrean, District 8
Felicia Moore, District 9
C.T. Martin, District 10
Kesha Lance Bottoms, District 11
Joyce Sheperd, District 12
Michael Bond, Post 1 At-Large
Aaron Watson, Post 2 At Large
H. Lamar Willis, Post 3 At-Large

Department of Planning and Community Development

James Shelby, Commissioner
Charlotta Wilson Jacks, Director - Office of Planning
Joshuah Mello, Assistant Director Transportation Planning - Office of Planning

Handlebar Committee

Aaron Fowler, Georgia Institute of Technology
Amy Goodwin, Atlanta Regional Commission
Andre Bertand, Morehouse College
Angie Laurie, Atlanta Downtown Improvement District
Arthur Frazier, Spelman College
Ben Chambers, Atlanta BeltLine
Bonita Dukes, Clark Atlanta University
Brenda Warner, City of Atlanta
Byron Rushing, Atlanta Regional Commission
Catherine Owens, Atlanta BeltLine
Dan Hourigan, Midtown Alliance
Daniel Ephraim, City of Atlanta
David Williamson, Georgia Institute of Technology
Denise Quarles, City of Atlanta
Don Blackston, Spelman College
Eric Ganther, Coca-Cola
Howard S. Wertheimer, Georgia Institute of Technology
Joseph Skopitz, Centennial Olympic Park
Kari Watkins, Georgia Institute of Technology
Kelsey Baack, City of Atlanta
Lance Lunsway, Georgia Institute of Technology
Lisa Safstrom, Georgia Institute of Technology
Michael Sproston, Georgia State University
Michele Wynn, City of Atlanta
Patrick Sweeney, Atlanta BeltLine
Pete Hayley, Atlanta University Center
Ramesh Vakamudi, Georgia State University
Rebecca Serna, Atlanta Bicycle Coalition
Russell Seagren, Georgia State University
Saba Long, City of Atlanta
Stosh Kozlowski, City of Atlanta

Project Team

Joe Gilpin, Alta Planning + Design
John Cock, Alta Planning + Design
Brad Davis, Alta Planning + Design
Collin Chesston, Alta Planning + Design
John Karnowski, Foresite Group
Chris Rome, Foresite Group
Osman Ervin, Robert and Company

Funding Provided By

Atlanta Regional Commission
Atlanta Bicycle Coalition
CONTENTS

Introduction 1
Overview 2
Goals 4
Network Overview 6
Corridor Summary 7
Expanding the Network 8
Funding Strategy 9
On-Street Marked Bikeway Continuum 10
Cycle Atlanta: Phase 1.0 Study Facility Types 11
Network Design 12
Facility Design 13
Lane Reduction and Street Design Strategy 14
CycleAtlanta App 15
Community Involvement 18

Corridor A. Brookwood - Midtown - Downtown - West End 19
Overview 20
Network Design 20
Facility Design 22
Corridor A Projects 22
Corridor A Design Schematics 23

Corridor B. Knight Park – Midtown – Virginia-Highland 47
Overview 48
Network Design 48
Facility Design 48
Corridor B Projects 50
Corridor B Design Schematics 51

Corridor C. Grove Park – Downtown – Poncey-Highland 69
Overview 70
Network Design 70
Facility Design 70
Corridor C Projects 72
Corridor C Design Schematics 73

Corridor D. Mozley Park – Downtown – Grant Park 81
Overview 82
Network Design 82
Facility Design 82
Corridor D Projects 84
Corridor D Design Schematics 85

Corridor E. Underwood Hills – Downtown – Candler Park 93
Overview 94
Network Design 94
Facility Design 94
Corridor E Projects 96
Corridor E Design Schematics 97

Appendix 121
Corridor A Cost Estimates 122
Corridor B Cost Estimates 126
Corridor C Cost Estimates 128
Corridor D Cost Estimates 130
Corridor E Cost Estimates 132
This page has been intentionally left blank.
Introduction

An overview of findings and recommendations
Overview

The Cycle Atlanta: Phase 1.0 Study represents a strategy to create a complete and connected network of high-quality bicycle facilities in the core of the city. The focus of the study is on five cycling corridors that extend from the Atlanta BeltLine into the center of the city. Completing the bikeway network along each of these corridors will improve cycling conditions and expand route options that are desirable for a wide range of cyclists. When implemented, the improved and expanded bikeway network will enhance connections between neighborhoods, job centers, transit stations, tourist attractions, shops, and restaurants, as well as other daily destinations.

The Cycle Atlanta: Phase 1.0 Study is a supplement to the Connect Atlanta Plan, which is the adopted transportation plan for the City of Atlanta. While the Connect Atlanta Plan includes a city-wide network strategy to improve cycling routes, it does not provide specifics related to facility types and alignments along the five corridors that are the focus of this study.

Additionally, since the adoption of the Connect Atlanta Plan, the City of Atlanta has continued to experience tremendous growth in cycling rates and bikeway facility design has advanced considerably. Now, new and innovative bikeway facility treatments go beyond shared lane markings and standard bike lanes, which were the main bikeway facilities described in the Connect Atlanta Plan.

To address the growing demand for better cycling conditions and provide more specific details for implementation, this study was developed. In short, the Cycle Atlanta: Phase 1.0 Study is an implementation strategy to develop dedicated, high-quality bikeways in the core of the City.
Study Highlights

The Cycle Atlanta: Phase 1.0 Study is a comprehensive implementation strategy for bicycling improvements in the core of the City. Important facts and features include:

- **Expand network of high-quality bicycle facilities** - When implemented, the Cycle Atlanta: Phase 1.0 Study will add 31 miles of bikeway facilities that will include bike lanes, cycle tracks and multi-use paths. This addition more than doubles the existing network of 30 miles of bikeway facilities in the Cycle Atlanta: Phase 1.0 Study area.

- **Create a complete and connected bikeway network** - When implemented, the proposed network will "fill the gaps" in the existing bikeway network by providing cyclists with a contiguous bikeway network in the city center.

- **Connect bicyclists to transit** - The Cycle Atlanta: Phase 1.0 Study corridors connect to all of the MARTA stations within the Atlanta BeltLine loop as well as the Atlanta Streetcar. In total, the corridors connect directly with 12 of the 24 MARTA stations in the City of Atlanta.

- **Connect people to jobs** - The study corridors connect two of the largest job centers in the Atlanta Region – Midtown and Downtown – as well as major employment hubs including universities, hospitals, and other civic institutions.

- **Connect people to neighborhoods** - The study corridors pass through 35 neighborhoods. The proposed bikeway network will help people who live in the core of the city connect to jobs, parks and green spaces, and other daily destinations.

- **Develop new data metrics for cycling in Atlanta** - In coordination with the Atlanta Regional Commission and the Atlanta Bicycle Coalition, researchers at the Georgia Institute of Technology worked with the City of Atlanta to develop a cycling-specific app. The app is being used to identify who is riding, where are they riding, and track changes in cycling rates over time as investments in cycling infrastructure are made.

- **Connect people to and from the Atlanta BeltLine** - The Atlanta BeltLine is becoming a destination as well as a route option for people biking to different destinations in the City. The Cycle Atlanta: Phase 1.0 Study bikeway network improves cycling connections to the Atlanta BeltLine by providing dedicated bicycle facilities along major street corridors.

- **Support a healthy and positive city image** - The image of a 21st century city is one where people are active, healthy, and social. Completing the bikeway network will help the City increase cycling rates, which will in turn create an active and positive image of Atlanta.

- **Expand sustainable transportation options** - The City of Atlanta is committed to expanding mobility options and reducing the carbon footprint of people living in, working in, and visiting the City. Cycling is a clean mode of transportation that reduces the need for fossil fuels and minimizes the impacts of transportation on air quality.

- **Create supportive cycling environment for a bike share system** - One of the city-wide cycling goals for Atlanta is to launch a bike share system. Building the recommended bikeway network will create a supportive cycling environment for the wide range of bike share users.
Goals
The goals for Cycle Atlanta: Phase 1.0 Study support the larger city-wide goals for cycling and transportation. As mentioned previously, this study is a supplement to the larger transportation strategy for Atlanta, which is outlined in the Connect Atlanta Plan.

City-Wide Transportation Goals
The overall goals defined in the Connect Atlanta Plan include:

- Build Transit Infrastructure
- Improve Existing Transit Service
- Promote Sustainable Travel Modes
- Untangle ‘Hot Spots’
- Achieve a State of Good Repair
- Develop New Funding Sources

The Cycle Atlanta: Phase 1.0 Study supports these larger goals by improving access to transit and expanding infrastructure that supports bicycling. It improves and expands travel options for residents, workers, and visitors, while improving street conditions and taking advantage of new or previously untapped funding sources.

City-wide Cycling Goals
Looking specifically at cycling in Atlanta, this planning study is part of an overall effort by the City of Atlanta to improve cycling conditions and rates in Atlanta. City-wide goals for cycling improvements include:

- Double bicycle commute to work mode share to 2.2% by 2016
- Become top ten city in US for cycling to work (#23 in 2012)
- Become top ten city for cycling safety (#17 in 2012)
- Double miles of high-quality bicycle lanes/cycle tracks to 60 miles
- Double miles of high-quality linked shared-use paths to 60 miles
- Secure Silver or Gold Bicycle Friendly Community status
- Introduce bicycle sharing program that supports local economy
- Address several strategies in Power to Change, the City’s long-term sustainability plan, including: air quality, community health/vitality, jobs and competitiveness and transportation

Cycle Atlanta: Phase 1.0 Study Goals
In addition to the city-wide cycling goals, several specific goals were developed for Cycle Atlanta: Phase 1.0 Study. They include:

- Prioritize “high quality” bikeway projects
- Design bikeway networks and facilities to attract riders that categorize themselves as “interested but concerned”
- Expand bicycle connectivity to all segments of the city
- Emphasize connectivity and accessibility for bikeway networks and facilities
- Develop baseline data for cycling rates, activities, and users to track impact of investment in bicycle infrastructure
- Raise awareness of the bikeability of Atlanta with education and promotional activities

The design and implementation strategies presented as part of this study support all of the goals outlined above.
Design Cyclists

Development of route options and the types of facilities for this project focused on the type of cyclists that should be accommodated with new investments in bike infrastructure. The Handlebar Committee, along with the public, developed the following criteria for the type of cyclists that bike facilities should accommodate:

- Women
- Parents and their children
- College students
- Seniors and older adults
- Minorities
- Youth – Make it safer for elementary, middle, and high school students to ride a bike to school
- City residents and workers that commute to job centers or to or from MARTA stations by bike

The overall focus with these cyclists is that cycling is something everyone should feel comfortable doing, regardless of their skill level, race, economic background, or age. Additionally, if facilities are designed that accommodate people that are more cautious about riding in traffic, you can also improve the riding experience for those that are more skilled or willing to ride in traffic. This approach was a key factor guiding the development of the Cycle Atlanta: Phase 1.0 Study bikeway network and corresponding bikeway facilities.
Network Overview

The overall goal for network design with this project is to develop five high-quality corridors that are complete and extend from the Atlanta BeltLine to the core of the city. Additionally, the goal is to develop a network that includes higher quality facilities that accommodate a wider range of cyclists. Each of the five corridors analyzed and designed as part of this study were identified as “Core Bicycle Corridors” in the Connect Atlanta Plan, the City of Atlanta’s Comprehensive Transportation Plan. Additionally, each of the five corridors include “Secondary Bicycle Corridors” that offer alternative alignment options for each corridor. Each of the five corridors are summarized on the subsequent page and described in detail in their respective chapters of this report.

The maps on this page highlight the Connect Atlanta routes that established the study area and the refined network map that presents the proposed alignments and associated facility types proposed for Cycle Atlanta: Phase 1.0 Study.
Corridor Summary

The core bicycle facilities and their alternative route options were used to guide the alignments for each corridor. Below is a summary of the context for each corridor. Additionally, each corridor has a stand-alone chapter in this report that describes the proposed network and facility designs in detail.

Corridor A
Peachtree Rd – W Peachtree St (US 19/SR 9) – Peachtree St – Whitehall St – Murphy Ave

- 2.7 miles or 47 minutes by bike
- Connects 8 MARTA stations
- Connects 14 neighborhoods
- Connects 7 council districts

Corridor B
W Marietta St – 10th St

- 3.6 miles or 24 minutes by bike
- Connects 1 MARTA station
- Connects 6 neighborhoods
- Connects 3 council districts

Corridor C
We Boone Blvd – 1 Allen Jr Blvd – H McCall Blvd

- 4.5 miles or 30 minutes by bike
- Connects 1 MARTA station
- Connects 9 neighborhoods
- Connects 3 council districts

Corridor D
ML King Jr Dr – Woodward Ave

- 4.3 miles or 28 minutes by bike
- Connects 3 MARTA stations
- Connects 11 neighborhoods
- Connects 5 council districts

Corridor E
Howell Mill Rd – Marietta St – Edgewood Ave – Euclid Ave

- 6.7 miles or 47 minutes by bike
- Connects 3 MARTA stations
- Connects 11 neighborhoods
- Connects 4 council districts
Expanding the Network

When implemented, the Cycle Atlanta: Phase 1.0 Study recommendations will expand the existing bikeway network and “fill the gaps” between existing facilities. The completed network will increase the number of miles of bikeway facilities within the Cycle Atlanta: Phase 1.0 Study area by 103%, from 30 miles to 61 miles. The sections and charts below summarize existing conditions in the study area as well as the distribution of facility types. The recommendations will expand the number of miles of bikeway facilities available for cyclists and the type of facilities cyclists can use.

Within the study area, there are...

30 miles of existing bikeways. 31 miles of proposed bikeways.

The proposed bikeways will expand the study area network by...

103% when implemented.

Existing Bikeway Facilities

At the end of 2012, the City of Atlanta had 69 miles of bikeway facilities. These facilities included shared lane markings, bike lanes, and multi-use paths. Within the study area, there are 30 miles of bikeways. Additionally, the facilities within the study area represent 44% of all of the facilities in Atlanta.

By facility type, the majority of facilities city-wide and within the study area are bike lanes and multi-use paths. Within the study area, the majority of facilities are multi-use paths, followed by bike lanes and shared lane markings.

Proposed Bikeway Facilities

By implementing the recommendations for this study, the City of Atlanta will double the bikeway network in the core of the City. In total, the recommendations for Cycle Atlanta: Phase 1.0 Study represent 31 miles of new bikeway facilities.

By facility type, bike lanes represent the majority of the bikeway facilities with 18 miles, or 59%, recommended. Shared lane markings represent 16%, or 4 miles, of recommended bikeway facilities.

The recommendations also significantly expand the amount of separated facilities, including cycle tracks and multi-use paths. These facilities are desired by a wider range of cyclist skill levels, particularly those not comfortable riding in traffic. The recommendations add 5 miles of cycle tracks and 3 miles of multi-use paths. These facilities represent 25% of the recommended bikeway miles for this study.
Funding Strategy

The cost estimates for this project were developed to help the City of Atlanta and its partners prioritize the bikeway projects presented in this study. The cost estimates can be used to develop stand-alone projects for implementation or they can be incorporated into broader transportation projects. Example projects include resurfacing projects, streetscape projects, re-stripping projects, or other transportation projects that present an opportunity to incorporate the bikeway recommendations in this study.

The subsequent sections on this page describe the cost estimate methodology, the distribution of cost by corridor and bikeway facility type, as well as a summary of the Peachtree Street alternative treatment options. Additionally, project cost estimates are summarized at the beginning of each corridor chapter and in the appendix.

Cost Estimate Methodology

The cost estimates for Cycle Atlanta: Phase 1.0 Study are planning-level cost estimates. They include an estimate of probable cost for construction, design, and contingency. Construction costs may include pavement marking removal, new pavement marking, bicycle signals and traffic signals, tubular markers, and multi-use path construction. Design costs are estimated to be 25% of construction costs and contingency is estimated to be 20% of construction costs.

The cost estimates do not include estimates for utility re-location, resurfacing, or right-of-way acquisition. These costs will need to be identified and developed as the projects go through the scoping, design, and construction phases. For projects that do need additional scope development, it has been noted in the Design Schematics section for each corridor chapter.

Resurfacing costs were specifically not included because not all of the streets with proposed bikeways require resurfacing. Some of the facilities can be implemented simply with removal of existing lane markings and the application of new pavement markings, signage, or signals. To estimate an order of magnitude cost, the City of Atlanta uses $250,000 per mile for resurfacing planning-level cost estimates.

Peachtree Street Alternative Treatment Options

For this study, two cost estimates for Peachtree Street, from Interstate 85 to Lindbergh Avenue, were developed. One option is for bike lanes and the estimated cost is $376,163. A second option is for shared lane markings and the estimated cost is $75,235. The cost estimate summaries on this page include the bike lane option and do not include the shared lane marking option. Additionally for more detailed information about the considerations associated with each option, see the Corridor A chapter.

Cost Summary

Overall, the cost estimates for all Cycle Atlanta: Phase 1.0 Study projects is $8,819,965, or $284,515 per mile. The most expensive corridor to implement will be Corridor A. It is also the longest corridor and will cost $4,216,955, or 48% of the total estimated cost for this study. The least expensive corridor to implement is Corridor D. It is also the shortest corridor and will cost $322,502, or 4% of the total estimated cost for this study.

Cost By Corridor

By cost, Corridor A is the most expensive corridor but also the longest corridor. It will cost $4,216,955, or 48% of the total estimated cost for this study, to implement. Corridor D is the least expensive corridor but also the shortest. It will cost $322,502, or 4% of the total estimated cost for this study, to implement.

Cost by Facility Type

By facility type, bike lanes are the most expensive bikeway facility and represent 41% of the total estimated costs for this study. However, they also represent 58%, or 18 miles, of the total new bikeway miles for this study. Shared lane markings are the least expensive bikeway facility and represent just 5% of the total estimated costs for this study. However, they represent 13%, or 4 miles, of the total new bikeway miles for this study.

It should be noted that there is a balance between cost and level of protection or separation between cyclists and vehicles. In relative terms, the cost per mile is higher for cycle tracks and multi-use paths. However these facilities offer greater comfort and safety for cyclists. Likewise, bike lanes and shared lane markings have lower costs per mile but offer less protection and separation between vehicles and cyclists. As projects are prioritized, these considerations will need to be taken into account.
On-Street Marked Bikeway Continuum

As a general rule, the level of comfort for cyclists is a balance between traffic volumes, speeds, and physical separation from vehicular traffic. On streets with lower traffic volumes and speeds, people can feel safe sharing travel lanes with vehicles. For these streets, shared lane markings can suffice to improve the level of comfort for cyclists. However, along streets with higher traffic volumes and speeds, and dedicated and protected space for people, cycling helps improve safety and the perception of safety for interested cyclists.

The diagram on this page provides a graphic summary of the continuum of on-street marked bikeway facilities. For this project, a full range of facility types was selected to create a balanced bikeway network that can accommodate a wider range of rider types.
A supplement to the Connect Atlanta Plan

Cycle Atlanta: Phase 1.0 Study Facility Types

A variety of bicycle facilities have been used to develop the Cycle Atlanta: Phase 1.0 Study network. The facilities were selected with the overall goal of providing the most protection and separation possible given the conditions along each corridor. Below is a description of the facilities that are described throughout this document in maps and graphics.

Shared Lane Marking

Shared lane markings, or “sharrows,” are road markings used to indicate a shared lane environment for bicycles and automobiles. Among other benefits, shared lane markings reinforce the legitimacy of bicycle traffic on the street, recommend proper bicycle positioning, and may be configured to offer directional and wayfinding guidance. It should be noted that shared lane markings are not a facility type, but rather a pavement parking with a variety of use to support a complete bikeway network.

Bike Boulevard

Bicycle boulevards are streets with low motorized traffic volumes and speeds, designated and designed to give priority to bicycle travel. Bicycle Boulevards use signs, pavement markings, and speed volume management measures to discourage through trips by motor vehicles and create safe, convenient crossings of busy arterial streets.

Bike Lane

Bike lanes designate an exclusive space for bicyclists through the use of pavement markings and signage. The bike lane is located adjacent to motor vehicle travel lanes and flows in the same direction as motor vehicle traffic. Bike lanes enable bicyclists to ride at their preferred speed without interference from prevailing traffic conditions.

Buffered Bike Lane

Buffered bike lanes are conventional bicycle lanes paired with a designated buffer space separating the bicycle lane from the adjacent motor vehicle travel lane and/or parking lane. These lanes provide greater separation between bicyclists and motor vehicles, and appeal to a wider cross-section of bicycle users.

Contra-Flow Bike Lane

Contra-flow bicycle lanes are bicycle lanes designed to allow bicyclists to ride in the opposite direction of motor vehicle traffic. They convert a one-way traffic street into a two-way street: one direction of motor vehicles and bikes, and the other bikes only. These lanes are used along corridors where alternative routes include unsafe or uncomfortable streets with high traffic volumes and/or no bicycle facilities or where two-way connections between bicycle facilities are needed along one-way streets.

Protected Cycle Track

A cycle track is an exclusive bike facility that combines the user experience of a separated path with on-street infrastructure of a conventional bike lane. A cycle track is physically separated from motor vehicles and distinct from the sidewalk. Cycle tracks may be one-way or two-way. By separating cyclists from motor traffic, cycle tracks can offer a higher level of security than bike lanes and are attractive to a wider spectrum of the public.

Raised Cycle Track

A raised cycle track is a type of cycle track that is vertically separated from motor vehicle traffic. They may be at the level of the adjacent sidewalk, or set at an intermediate level between the roadway and sidewalk to segregate the cycle track from the pedestrian area. They may also be designed for one-way or two-way travel by bicyclists. A raised cycle track can provide additional separation and protection between bicyclists and motor vehicles.

Multi-Use Path

Multi-use paths are off-street bike facilities that are designed to accommodate bicyclists and pedestrians. Multi-use paths can be placed adjacent to a street and take the place of a sidewalk or be completely separated from a street, such as along a greenway. Multi-use paths for the Cycle Atlanta: Phase 1.0 Study are used to connect the off-street multi-use path network to on-street bike facilities.

Source: Text adapted from the NACTO Urban Bikeway Design Guide.
Network Design

The focus for this study was on five bicycle corridors identified in the Connect Atlanta Plan, the City of Atlanta’s transportation plan. The proposed network design for this study presents a complete and connected network that links the five study corridors to each other, as well as other existing and proposed bikeway facilities. It should be noted that this study does not preclude the need to develop a city-wide bicycle network or to provide bicycle accommodations as part of complete street provisions on all streets in the City.

Several factors were considered when developing the alignments for the Cycle Atlanta: Phase 1.0 Study bikeway network. No one factor was given more weight than the others when considering the entire network design. However for different sections of corridors, some factors were given more priority than others.

For example, the corridor alignment along the southern portion of Corridor A provides two parallel route options. One alignment is a protected facility along the western edge of the rail lines and the MARTA lines as the corridor travels from the Atlanta BeltLine to the Centennial Olympic Park area. The other parallel alignment is a bike lane that runs along the eastern edge of the rail lines and MARTA lines as the corridor travels from the Atlanta BeltLine to Downtown. Because there are few places to cross the rail lines in this area, bike facilities are proposed along both sides of the rail lines.

This strategy was used for several reasons. For one, the alignments provide bike facilities for neighborhoods on both sides of the rail lines and accommodate different types of cyclists. The alignments also connect to different destinations once Corridor A enters Downtown.

Additionally, traffic volumes are relatively low along both routes, which allow for travel lane reductions to accommodate bike facilities within the existing curb-to-curb width. However, the street widths and the number of travel lanes along the western alignment more easily accommodate a protected facility while the same considerations along the eastern alignment more easily accommodate bike lanes. This balanced approach of considering a range of design factors was applied to each Cycle Atlanta: Phase 1.0 Study corridor when developing the bikeway network.

Network Design Factors

Existing facilities
Completing the network of existing facilities was a key consideration with the network development. The focus was on creating continuous bike facility routes along each of the five study corridors.

Connections to destinations
Providing people with the option of biking to major destinations in Atlanta using dedicated bike facilities was given significant consideration.

Transit connectivity
Improving connections to MARTA stations was an important factor in developing the route alignments. Whether traveling to or from a MARTA station, cyclists will have improved route options to get to their destinations by combining a bike and transit trip.

Route choice
The study alignments are designed to give cyclists more than one route option where possible. People may need to travel one way in the morning from home to work and another way from work to the grocery store in the afternoon. For a variety of reasons, people need more than one route option to get to their destinations by bike. Corridor alignments were developed with this consideration in mind.

Accommodating different rider types
Not every cyclist is comfortable riding along a street with bike lanes or shared lane markings. For some, having a protected facility or a route along a street with low vehicle volumes is preferred. Where possible, parallel route alignments were developed to provide a protected facility or “low stress” route option and a bike lane or shared lane marking route option.

Proposed projects and project coordination
There are many transportation improvement projects that have been proposed or are the process of being implemented. The proposed bike facilities were developed with consideration for previous planning studies, projects scheduled for construction, or projects currently being designed and developed.

Traffic volumes and speeds
Motor vehicle volumes and speeds along proposed routes were one of several factors considered when selecting corridor alignments and the facility type for each alignment. Where motor vehicle volumes and speeds are high, more separation between cyclists and motorists is warranted. Furthermore along many of the study corridors, travel lane reductions are necessary to accommodate bike facilities without moving the existing curb locations. The capacity of roadways to handle motor vehicle traffic with reduced travel lanes was reviewed.

Physical barriers
Physical barriers, such as interstates and rail lines, are a part of traveling in Atlanta. They limit the number of places one can cross from one side to the other and often concentrate all modes of travel to confined crossings, such as bridges or underpasses. Wherever possible, route alignments used existing bridges and underpasses to cross over or under these barriers. Additionally, parallel routes were designed to expand route options on either side of these barriers where possible.

Street network (one way vs two way, short trip vs long trip)
The street network in Atlanta can provide convenience or inconvenience depending on the type of trip and one’s final destination. One-way streets can mean having to travel extra distances to get to one’s final destination. Additionally, signal timing and the frequency of intersections along certain routes can speed up or slow down one’s trip time. With innovations in bike facility designs, two-way cycle tracks and contra-flow bike lanes can create opportunities for two-way bicycle facilities along one-way streets for vehicles. These treatments are often used to provide alternative bicycle routes to major streets with confined right-of-way widths and high vehicular volumes. Additionally, some routes are designed with commuters or longer trips in mind, while other routes are designed to accommodate shorter or more localized trips.
Facility Design

Like the network design approach, several factors were considered when developing the facility designs along each corridor. No one factor was given more weight than the others when considering the entire network design. However, for different sections of corridors, some factors were given more priority than others.

Facility design was developed parallel with the network design. For most of the proposed facilities along each corridor, cross sections have been developed for a particular segment. Where a facility type changes or the lane configurations and facility dimensions change, a new cross section was developed. With this project, every corridor has a proposed facility type with dimensions and associated cost estimates, has a project that is already designed and programmed for construction, or already has an existing facility.

Additionally, corridor segments that have already been designed or are going through the construction process do not have cross sections for this study because the designs have already been developed. Examples include the two-way cycle track along 10th Street between Monroe Drive and Piedmont Road, as well as the new streetscape project along MLK Jr. Drive from Ollie Street to Northside Drive.

Facility Design Factors

Right-of-way width

One of the primary considerations with facility design was ‘what can be done within the existing right-of-way?’ Moving curbs and relocating utilities can increase project costs and the amount of time it takes to design and build a project. For most of the projects developed, the strategy was to use the existing width between the existing curbs to install bikeway facilities and re-configure travel lanes.

Safety

Safety was considered for all roadway users. For many projects, adding bikeway facilities and re-configuring lanes improves street conditions for people driving, biking, and walking. For example, many of the projects include lane reductions that add a center turn lane and bike facilities to a street. The center turn lane can improve the safety of left turn movements for vehicles while the lane reduction creates dedicated space for bicyclists riding along a street. This same approach often has the added benefit of reducing vehicle speeds, which benefits everyone using the street from a safety perspective.

Likewise, important intersections were given extra consideration in order to develop treatments that mitigate conflicts between people driving and biking. The intersection designs are also developed to improve visibility of cyclists at intersections and help bicyclists cross through intersections more safely.

Lane configuration and alignment

Adding bikeway facilities along most of the corridors also required travel lane re-configuration or new alignments, particularly at intersections. The type of facility along each corridor segment, which side of the street they are applied, and how all of the bike lanes and travel lanes align as they change along the corridor was taken into consideration.

Intersection design

As mentioned with other facility design factors, intersection design was considered, particularly at key intersections. Issues like improving vehicular turning movements, improving bicycle turning movements, enhancing bicycle visibility, and improving wayfinding for bicyclists at intersections were all taken into account when developing intersection designs and facility cross sections.

On-street parking

The design strategy for on-street parking was to preserve existing on-street parking wherever possible. However, in select cases on-street parking needs to be removed or re-located to safely accommodate the addition of a bike facility. Where existing on-street parking is impacted, it is noted in the corridor schematics section of this report.

Additionally creating opportunities for on-street parking was also considered. On-street parking was added where it could improve access to businesses or residential areas or safety and comfort for cyclists (to create a buffer between cyclists and travel lanes).

Motor vehicular capacity

Balancing roadway motor vehicular capacity with the need of all street users was also a consideration. Many of Atlanta’s streets have excess capacity and present an opportunity to remove a travel lane to accommodate a bike facility. For more on this approach, see the Lane Reduction and Street Design Strategy section of this chapter.

Cost

Managing cost was an important component of developing facility designs. Developing projects that work with the existing curb-to-curb width helps keep project costs down and reduces the time it takes to construct facilities. Moving street curbs adds additional cost because of construction requirements, the need to move utilities (above and below ground), or the purchase of right-of-way.
Lane Reduction and Street Design Strategy

In urban settings, street space is a premium and often has to be prioritized based on the needs of people travelling along the street as well as the businesses and residences that live and work along the street. As described and analyzed in the Connect Atlanta Plan, many of Atlanta's streets have been designed to accommodate high-speed traffic flow. Some of these street design strategies include one-way streets, reversible lanes, multi-lane streets with large spacing between signals and others. While these design strategies may have improved travel time for people driving, they have often created unsafe conditions for people using the street because of higher vehicle speeds and created “bottle necks” at key intersections due to the rate at which vehicles can travel from one intersection to another.

To improve safety and create space for a wider range of people using the street, Connect Atlanta outlined several strategies for travel lane reductions or travel lane re-configurations that can improve safety, mobility and access for the wider range of people driving, walking, biking, and taking public transportation.

One of the most cost-effective strategies is the removal of one or more travel lanes for vehicles. The removal of a travel lane can create street space for bike facilities or sidewalks and improve driving conditions all at the same time. As described and analyzed in the Connect Atlanta Plan, many of Atlanta's streets are candidates for lane reductions. For a four-lane street, the Connect Atlanta Plan threshold for consideration of a lane reduction from four to three lanes is 25,000 vehicles per day. For a six-lane street, the Connect Atlanta Plan threshold for consideration of a lane reduction from six to five lanes is 35,000.

For Cycle Atlanta: Phase 1.0 Study, these thresholds were used as a guide to consider street design strategies along the five study corridors. Many other factors were also considered and are outlined in the Network Design and Facility Design sections of this chapter. As is illustrated in the chapters for each corridor, many of the streets along each corridor are over-built and can have one or more travel lanes removed to accommodate the proposed bikeway facilities.

Beyond simply removing a lane, the Connect Atlanta Plan outlined several other street design strategies that can be used as part of a lane reduction or on their own to create space for bike facilities and improve safety for all street users. They include the following:

- **Left turn lanes to restore capacity** – Many of Atlanta's streets are four- or six-lane undivided streets with no medians or left turn lanes. In urban conditions where left turns can be frequent, the lack of dedicated space for left-turning vehicles can actually reduce the vehicular capacity of travel lanes and create unsafe conditions for people driving. Adding a left turn lane can actually improve vehicular capacity for outside travel lanes, which can preserve or improve vehicular capacity along a street. Additionally, the left turn lane can improve turning safety at intersections or mid-block.

- **Correct lane imbalances** – Some streets in Atlanta have additional travel lanes for one direction of travel, e.g., one travel lane for north-bound traffic and two travel lanes for south-bound traffic. While these streets may have needed the additional lane in the past, often times these additional lanes are no longer needed and can present an opportunity to create additional space for bikeway facilities. Likewise, some of the imbalances have created confusion or awkward turning movements at intersections. Re-configuring the alignment of lanes, particularly at intersections, can often improve safety for people driving, walking, and biking through intersections. These strategies were used to create space for bikeway facilities and in some cases improve safety conditions for all users.

- **Re-calibrate speeds** – Posted travel speeds and actual travel speeds can often be different because of the street’s physical design, travel lane widths and the presence (or lack) of street elements, such as trees or on-street parking, can influence how fast people feel comfortable driving. Along some of Atlanta's streets, vehicular speeds are high because they are overly wide or have few street elements that would encourage people to slow down. The effect is that streets can be uncomfortable and unsafe for all users, including people walking and biking. Lane narrowing, adding on-street parking, reducing travel lanes, and adding bikeway facilities were all used as strategies to re-calibrate streets to be safer and more comfortable for all users.

In the illustration above from the Connect Atlanta Plan, the number of travel lanes is reduced from four lanes to three lanes. With one fewer lane, the extra street space can be used for expansion of sidewalks, street trees, or bikeway facilities. The addition of the center turn lane helps preserve vehicular capacity for the outside travel lanes while also improving safety for vehicles making left turns, either mid-block or at intersections. This type of street design strategy was used frequently with this study to create space for bikeway facilities.
CycleAtlanta App

In tandem with this study, the City of Atlanta collaborated with the Georgia Institute of Technology (Georgia Tech), the Atlanta Bicycle Coalition (ABC), and the Atlanta Regional Commission (ARC) to develop an innovative smartphone app that can be used to collect information about the routes people are using to bicycle. The information collected through April 2013 was used to inform the network and facility design for this study. Below is a summary of the app and its development.

Preliminary analysis results are presented in the Analysis section of this report. The data collected as part of this effort will be used to track changes in cycling behavior in Atlanta as bikeway facilities are built and the Cycle Atlanta Phase 1.0 Study bikeway network is completed.

What is the CycleAtlanta app?

CycleAtlanta (http://cycleatlanta.org/) is an application for iPhone and Android that collects data about cyclists’ routes, origins, destinations, demographics, and features of note in the City of Atlanta. The initial version of the app uses a smartphone’s geolocative capabilities to record a cyclist’s bike route as she travels to her destination. This allows City of Atlanta transportation planners to see which roads are avoided and which are popular, and use this information to inform future decisions about where infrastructure is needed to create bike-friendly routes through the city. The app also allows cyclists to enter their demographic data, rider type, and ride frequency to further analyze data collected.

In the first major revision of the app, the CycleAtlanta team has added the ability to crowdsource issues and amenities found on route, allowing users to contextualize or elaborate on a specific route. Users can pin noteworthy spots along their route, such as amenities (bike parking, bike shops or repair kits, public restrooms, secret passages, and water fountains) or infrastructure conditions that need improvement (pavement issues, traffic signals, enforcement, bike parking or bike lane issues). The goal of the project is to connect citizens to local government through the app, allowing them to participate in the planning process without being inhibited by spatial or temporal limitations in existing participatory planning practices.

The CycleAtlanta app has collected thousands of trips that help illustrate the route preferences of cyclists in the City. Some riders have also provided demographic and other information that helps answer questions like “Who is riding?”, “Why are they riding?”, and “how can cycling conditions be improved?” All of this data collected is being used to establish baseline metrics. These metrics will be used to analyze changes in cycling rates, attitudes, conditions, and demographics over the next five years as the recommendations from this study are implemented.
How do cyclists use CycleAtlanta app?
Once the app is launched, cyclists simply tap "Start" to begin recording their ride. When the ride is over, they tap "Save" and add additional details about trip purpose and optional comments. After the data is uploaded, CycleAtlanta displays the map of the ride, showing the route, distance traveled, and average speed. The app user can visit the app's previous trips details (date, time, distance, speed, CO2, saved, and calories burned) by looking at "My Trips" in the app. To note an issue or amenity, the cyclist taps "Note that" and selects the feature from a rolling menu. Upon hitting "Save," they are able to enter additional details or upload a picture to the app. By clicking on "My Notes," the previously entered notes can be viewed. The app will allow users to optionally add input personal demographic information, select categories for their cycling frequency and rider type, and provide their email address to receive updates about the study from the City of Atlanta.

Why is CycleAtlanta app needed?
50% of all trips in the U.S. are 3 miles or less, yet only 1.8% of those trips are taken by bicycle. Meanwhile, 36.5% of US adults are obese and the transportation sector accounts for 32% of US greenhouse gases. By increasing the use of bicycle transportation, we may begin to make an impact on the health and environmental issues facing our country.

One of the main reasons citizens do not use the healthier mode of cycling is due to a lack of safe infrastructure—dedicated bike routes, roads with bicycle lanes, and other designated bicycle facilities. Cyclists in general prefer riding on dedicated infrastructure, and many demographic groups, particularly women, have specific preferences regarding bike infrastructure. The City of Atlanta has a desire to put proper cycling infrastructure in place but needs information from citizens to prioritize improvements in a fiscally-constrained environment. Therefore, the purpose of CycleAtlanta is to involve citizens in bicycle infrastructure improvement decisions in the City of Atlanta, both to maximize the benefit of bike infrastructure funding and to empower citizens to be more active in transportation decisions.

Who is on the CycleAtlanta app team?
Dr. Kari Edison Watkins of Civil and Environmental Engineering and Dr. Christopher LeDantec of Digital Media, both Assistant Professors at Georgia Tech, are leading the project. Their team of students includes Marlam Asad, Anhong Guo, Aditi Misra, Alex Poznanski, and Caleb Southern. CycleAtlanta is a joint project between the City of Atlanta Department of Planning & Community Development, Georgia Institute of Technology, Atlanta Bicycle Coalition, and Atlanta Regional Commission (ARC). It is funded through a contribution from the Atlanta Bicycle Coalition and the Atlanta Regional Commission’s Livable Centers Initiative planning program. Additional support is provided by the GVU Center and the Institute for People and Technology at Georgia Tech.

CycleAtlanta is based on the open-source CycleTracks application originally developed for San Francisco, CA, and adopted in Austin, TX and Charlottesville, NC. The Cycle Atlanta project team has already contributed substantial revisions to the codebase and plans to continue to do so throughout the project.

6. http://www.sftca.org/content/category/12/07483/
CycleAtlanta App Data Analysis

One of the goals for this study is to develop baseline data for cycling rates, activities, and users to track the impact of investment in bicycle infrastructure. The CycleAtlanta App was developed to help with this effort. Since its initial launch, it has collected information about thousands of trips and rider information, which app users could elect whether to provide.

The information in the subsequent sections is a summary of findings developed by Alex Poznanski, one of the CycleAtlanta App team members. The findings are part of his thesis at the Georgia Institute of Technology.

The charts compare CycleAtlanta app data (CATL) to external data sets including the National Household Travel Survey (NHTS) and the 2012 Atlanta Bike to Work Challenge (BTW). Each chart notes the sample size for each data set used for analysis.

For more detailed analysis, see Alex Poznanski’s thesis.

What type of rider are app users?

Of the app users that provide information about the type of cyclist they consider themselves, the majority of themselves as “enthusied and confident” or “comfortable but cautious.” Another goal for this study is to increase the cycling rates for those that consider themselves “interested but concerned.” More protected facilities and enhanced intersections can help increase the cycling rates for this portion of the community.

Who is riding?

Cyclists in Atlanta today are predominately young men. However, surveys and the CycleAtlanta app data shows that people of all ages, races, and genders are riding. A major goal for this study and city-wide cycling is to increase the cycling rate for these minority groups. The goal is to make cycling a transportation option that is safe and convenient for anyone in the community, regardless of age, gender, or ethnicity.

Cyclist Gender

Cyclist Ethnicity

Cyclist Age

NHTS - National Household Travel Survey
CATL - Cycle Atlanta
BTW - Bike to Work Challenge
Community Involvement

Community involvement for this study was a collaborative effort between the design team, City of Atlanta officials, stakeholders, and the public. The process was to establish project goals, develop and refine concepts, and collect feedback and data as the study was developed. Input was collected through meetings with the public and stakeholders, as well as the CycleAtlanta app, an innovative smartphone application developed for this project to collect cycling data from users in real time. A summary of the community input opportunities used to develop this study are discussed in more detail below.

Handlebar Committee

The Handlebar Committee served as the technical review committee for this study. The group included city transportation officials, advocacy groups, university officials, and business owners, as well as transit and transportation partners. The Handlebar Committee met three times during the study including a project kick-off meeting in the Fall of 2012 (to establish the goals for the project), during the charrette (to review work in progress), and in the Spring of 2013 (to review the final plan).

Charrette

The Cycle Atlanta: Phase 1.0 Study charrette was held over a four-day period from Monday, February 11 to Thursday, February 14. During the charrette, the design team used a series of feedback loops between stakeholders, the public, and representatives from the City of Atlanta to propose, test, and refine recommendations for each study corridor. In particular, the design team:

- Reviewed and analyzed existing conditions along the study corridors
- Collected input from the key stakeholders and the public
- Developed initial concepts for each corridor
- Tested the concepts with field visits and assessments
- Refined design concepts for each corridor
- Developed a working list of treatments for each corridor based on input received

Stakeholder Meetings

Stakeholder meetings were conducted during the charrette and were conducted on a rolling basis over the four days. The stakeholder interviews allowed the design team to have one-on-one discussions with key stakeholders that have technical expertise or intimate knowledge about particular project corridors or projects along or near the study area that could impact the development of this study. Stakeholders included non-profits, such as the PATH Foundation, advocacy groups, such as the Atlanta Bicycle Coalition, business representatives, such as Coca-Cola, university leaders, such as campus planners from Georgia State University, as well as other city departments, such as the Department of Watershed Management.

Public Meeting

One public meeting was held at the Invest Atlanta office on Tuesday, February 12, 2013, which was in coordination with the second day of the charrette. Over 20 attendees received a presentation about the project and divided into smaller groups to provide detailed feedback on “work in progress” for the charrette. The input from the meeting was used to refine the proposed corridor alignments and facility types along each of the five corridors.

CycleAtlanta App

As of August 2013, the CycleAtlanta app had collected over 12,000 trips and over 1,000 users. The app data was used on a continuous basis through the project to identify routes cyclists are currently using, identify the types of routes cyclists are selected based on the self-assigned skill level, or routes based on other demographics, such as age and gender.
Corridor A. Brookwood - Midtown - Downtown - West End
Peachtree Rd. – W Peachtree St. (US 19/SR 9) – Peachtree St. – Whitehall St. – Murphy Ave.
Overview

Corridor A is the longest of the five Cycle Atlanta: Phase 1.0 Study corridors and it also the most significant in terms of connections. The corridor connects to the most MARTA stations (8 of 24 Atlanta stations) of the five corridors, the most destinations of all of the corridors, and to all four of the other Cycle Atlanta: Phase 1.0 Study corridors. Corridor A, or the “Peachtree Corridor,” is the “spine” of the cycling network in Atlanta.

The CycleAtlanta smartphone app data confirms this statement. Besides the Eastside Trail along the Atlanta BeltLine, the segment of Peachtree Street from Amtrak Station to the Five Points MARTA station appears to have recorded the greatest volume of trips. From the route data, it appears many bicyclists are using Peachtree Street either as a portion of their route navigating Midtown or Downtown or as their trip destination or origin along Peachtree Street. Either way, Peachtree Street is a significant bike route today even without dedicated bike facilities. With growth in cycling rates anticipated and with the City of Atlanta pursuing the launch of a city-wide bike share system, this study looked at ways to accommodate a wider range of bicyclists along the street.

In particular, the segment of Peachtree Street from the bridge over Interstate 85 to Lindon Avenue was given additional focus. This focus was due to the significance of this route in terms of context, connectedness, and complexity. For this stretch of Peachtree Street, two bikeway scenarios were developed. One scenario includes keeping the current lane configuration and applying shared lane markings to the outside travel lanes. This treatment would be the least costly to implement and would raise awareness of cyclists. However, it does not provide a dedicated space for bicyclists, which is necessary to attract a wider range of cyclists.

The second scenario includes reducing the number of travel lanes to create space for bicyclists. This treatment would be more costly to implement and could impact vehicular traffic patterns. However, it would also provide dedicated space for cyclists. The character of the street would likely change too to one that is more comfortable to walk and bike along because of the anticipated reduction in vehicle speeds and volumes.

Through the planning process for this study, the bike lane option was determined to be the preferred option. Before a final treatment is selected, additional discussion and analysis should focus on what the impact in Midtown might do to the image and function of Peachtree Street by adding bike lanes.

Network Design

Corridor A contains the greatest destination connectivity. To accommodate this consideration and to give cyclists a variety of route options, the alignment often includes parallel routes with a variety of bikeway types.

From the north, Peachtree Road connects Buckhead neighborhoods and Piedmont Hospital to bikeway facilities in Midtown. Once in Midtown, cyclists will have several route options depending on their destination, skill level, and direction of travel.

West Peachtree Street, Peachtree Street, Juniper Street, and Piedmont Avenue will provide north-south options through Midtown and provide a connection to Downtown. These streets also provide connections to east-west corridor routes along 8th/10th/12th Streets and Joseph E. Boone/Ralph McGill Boulevard.

In Downtown, the primary north-south facilities will diverge off of Peachtree Street to avoid the Atlanta Streetcar. One route option will be a cycle track along Peachtree Center Avenue/Gilmer Street/Courtland Street/Washington Street. This route option will provide a continuous, protected facility from Peachtree Street and Ralph McGill Boulevard to Memorial Drive.

The other primary route option will be a cycle track along John Portman Boulevard, Centennial Olympic Park Drive, and Walker Street. This route option will provide a continuous, protected facility from Peachtree Street and John Portman Boulevard to Castileberry Hill and Peters Street.

From the southern end of the corridor, people will travel along Lee Street/ Peters Street or Murphy Avenue/Whitehall Street. This stretch of the corridor is split by active rail lines and there are only a few areas one can cross from one side to the other. To accommodate people on both sides of the rail lines and to provide the option of using a protected facility or dedicated bike lane, both alignments have been developed.

Along Peters Street and Lee Street, traffic volumes and right-of-way allow for a multi-use path to be installed. This facility will provide a protected facility connection from the Atlanta BeltLine to West End and areas of Downtown. Along Murphy Avenue and Whitehall Street, street right-of-way widths and traffic volumes are more accommodating for bike lanes.

Facility Design

Corridor A has the greatest length of protected bike facilities of all the corridors. This is the result of the longer corridor length and wider streets with excess lane capacity. If bike lanes are selected as the preferred facility type along Peachtree Street in Midtown, bicyclists will be able to ride their bike in a bike lane or protected facility, such as a cycle track or multi-use path from Buckhead to West End.

Because many of the route alignments run along major streets and they connect to other major streets, intersection designs will be more important and complex. The additional focus on intersection design will improve safety for all roadway users. Several intersection concept designs have been developed with this project, including the area around the West End MARTA station, Centennial Olympic Park and the Peachtree Street- Ralph McGill Boulevard-Peachtree Center Avenue intersection. As projects along this corridor are implemented, design professionals should prioritize safe intersection design. This is particularly true for the facilities in Midtown and Downtown.
Corridor A Core and Alternative Routes

Corridor Length
- 7.1 miles
- 47 minutes by bike

Major Destinations
- Atlanta Beltline
- Piedmont Hospital
- Savannah College of Art and Design
- High Museum of Art
- Midtown Mile
- Fox Theatre
- Georgia Institute of Technology
- Emory University Hospital Midtown
- Peachtree Center
- Woodruff Park
- Georgia State University
- Underground Atlanta
- Fulton County Government Center
- Georgia State Capitol
- City of Atlanta City Hall
- Centennial Olympic Park
- Georgia World Congress Center
- Georgia Dome/Phillips Arena/NHN Center
- Atlanta University Center
- West End Business District

MARTA Stations
- Arts Center
- Midtown
- North Avenue
- Civic Center
- Peachtree Center
- Five Points
- Garnett
- West End

Neighborhoods
- Colonial Homes
- Adair
- Brookwood Hills
- Midtown
- Ansley Park
- Downtown
- Castloberry Hill
- Mechanicsville
- Pittsburgh
- Adair Park
- The Villages at Castloberry Hill
- Atlanta University Center
- West End
- Oakland City

NPU
- C
- E
- M
- T
- V

Council Districts
- 2
- 4
- 5
- 6
- 7
- 8
- 12

Relevant Plans
- Atlanta Beltline Subarea 7 Master Plan
- Atlanta Beltline Subarea 1 Master Plan
- Atlanta Beltline Subarea 2 Master Plan
- Brookwood Alliance Master Plan
- Great Sprit Midtown
- The Atlanta Connector Project
- Imagine Downtown: E N C O R E L C I
- West End LCI

A supplement to the Connect Atlanta Plan
Corridor A Projects

The projects listed in the table below are the projects currently programmed for construction along the corridor as well as new projects proposed as part of the Cycle Atlanta: Phase 1.0 Study. Facility type, the street that the project applies to, a description of the start and end points for the projects and a summary cost estimate are provided. Additional project cost information is provided in the Appendix for each project.

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Cross Section(s)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1005</td>
<td>Bike Lane</td>
<td>Murphy Avenue</td>
<td>Ralph David Abernathy Boulevard</td>
<td>Sylra Road</td>
<td>n/a</td>
<td>$229,841</td>
</tr>
<tr>
<td>1014</td>
<td>Protected Cycle Track</td>
<td>West Peachtree Street</td>
<td>12th Street</td>
<td>North Avenue</td>
<td>n/a</td>
<td>$248,572</td>
</tr>
<tr>
<td>1019</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>West Peachtree Street</td>
<td>North Avenue</td>
<td>n/a</td>
<td>$189,221</td>
</tr>
<tr>
<td>1024</td>
<td>Bike Lane</td>
<td>Peachtree Road</td>
<td>North Avenue</td>
<td>North Avenue</td>
<td>n/a</td>
<td>$230,876</td>
</tr>
<tr>
<td>5001</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>Interstates 85</td>
<td>Interstate 95</td>
<td>A1, A2, A3, A4</td>
<td>$229,841</td>
</tr>
<tr>
<td>5003</td>
<td>Cycle Track</td>
<td>West Peachtree Street</td>
<td>Peachtree Street</td>
<td>A12, A15, A17, A18, A20, A22, A24, A26, A27</td>
<td></td>
<td>$189,221</td>
</tr>
<tr>
<td>5004</td>
<td>Shared Lane Markings</td>
<td>Peachtree Street</td>
<td>Porter Place</td>
<td>John Portman Boulevard</td>
<td></td>
<td>$54,893</td>
</tr>
<tr>
<td>5005</td>
<td>Cycle Track</td>
<td>Cantennial Olympic Park Drive</td>
<td>Marietta Street</td>
<td>Nelson Street</td>
<td></td>
<td>$264,856</td>
</tr>
<tr>
<td>5006</td>
<td>Cycle Track</td>
<td>Candler Street-Washington Street</td>
<td>Peachtree Center Avenue</td>
<td>Memorial Drive</td>
<td></td>
<td>$264,856</td>
</tr>
<tr>
<td>5007</td>
<td>Bike Lane</td>
<td>Memorial Drive</td>
<td>Peachtree Street</td>
<td>A12</td>
<td></td>
<td>$142,496</td>
</tr>
<tr>
<td>5008</td>
<td>Multi-Use Path</td>
<td>Paces Street-Whitehall Street</td>
<td>Whittier Street</td>
<td>Ralph David Abernathy Boulevard</td>
<td></td>
<td>$885,364</td>
</tr>
<tr>
<td>5009</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>Mitchell Street</td>
<td>Memorial Drive</td>
<td></td>
<td>$885,364</td>
</tr>
<tr>
<td>5010</td>
<td>Bike Lane</td>
<td>Whitehall Street-Murphy Avenue</td>
<td>Peachtree Street</td>
<td>Sylra Road</td>
<td>A3, A36, A39, A40, A42</td>
<td>$241,995</td>
</tr>
<tr>
<td>5013</td>
<td>Cycle Track</td>
<td>Courtland Street</td>
<td>Peachtree Circle</td>
<td>A9, A10, A11</td>
<td></td>
<td>$17,117</td>
</tr>
<tr>
<td>5013</td>
<td>Cycle Track</td>
<td>Courtland Street</td>
<td>Peachtree Circle</td>
<td>A9, A10, A11</td>
<td></td>
<td>$17,117</td>
</tr>
</tbody>
</table>

Notes:
1. 1000 series: Facilities to be built in 2013
2. 2000 series: Facilities to be built in 2014
3. 3000 series: Facilities to be built in 2015
4. 4000 series: Facilities under design
5. 5000 series: Facilities under construction
6. Cost estimates include an estimate of probable cost for construction, design cost (25% of construction costs), and contingency (20% of construction costs). Costs may not include re-striping costs, signal improvements, new pavement markings, and multi-use path construction. Construction costs do not include the process of being designed, or in the process of being constructed.
Corridor A Design Schematics

The cross sections, plan concepts, and accompanying notes provide a description for the design of the proposed facilities along the corridor. A typical cross section has been developed for every segment of the corridor where a facility is proposed as part of the Cycle Atlanta: Phase 1.0 Study and where projects have been programmed but the facility design has not been finalized. Cross sections were not developed for corridor segments that already have a facility, where the facility has already been programmed for construction or where the facility has already been designed through another project or planning effort.

The typical cross sections and plan concepts form the basis for the cost estimates presented on the previous page. Each project consists of one or more cross section or plan concept segments. The design schematics were used to provide details about facility design for projects, particularly where cross sections change along the corridor or intersection design is more complex.

The legend below provides a summary of the different symbols and line types used to describe existing conditions or proposed features along the corridor.
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Peachtree Road</td>
<td>Colonial Homes Drive</td>
<td>Brighton Road</td>
<td>6</td>
<td>5</td>
<td>4 travel lanes; center turn lane/median strips</td>
</tr>
<tr>
<td>A2</td>
<td>Peachtree Road</td>
<td>Brighton Road</td>
<td>Collier Road</td>
<td>6</td>
<td>5</td>
<td>4 travel lanes; center turn lane/median strips</td>
</tr>
</tbody>
</table>

![Map of Atlanta Beltline and surrounding areas]

- Atlanta Beltline
- 37,400 AADT (2007, 2011)

Distance:
- 5.0 Minutes (0.75 Miles)
- 2.5 Minutes (0.375 Miles)
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>Peachtree Road</td>
<td>Collier Road</td>
<td>Peachtree Road Bridge</td>
<td>6</td>
<td>5</td>
<td>4 travel lanes; center turn lane</td>
</tr>
<tr>
<td>A4</td>
<td>Peachtree Road</td>
<td>Peachtree Road Bridge</td>
<td>6</td>
<td>5</td>
<td>4 travel lanes; center turn lane</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>Peachtree Street</td>
<td>Peachtree Road Bridge</td>
<td>Northbound ramp to Spring-Buford Connector</td>
<td>6</td>
<td>5</td>
<td>4 travel lanes; center turn lane</td>
</tr>
</tbody>
</table>
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street 1</th>
<th>Street 2</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6A</td>
<td>Peachtree Street</td>
<td>Northbound ramp to Spring-Buford Connector</td>
<td>Spring Street</td>
<td>6</td>
<td>5</td>
<td>5 travel lanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7B</td>
<td>Peachtree Street</td>
<td>Spring Street</td>
<td>Peachtree Circle</td>
<td>6</td>
<td>6</td>
<td>Maintain existing lanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peachtree Street</td>
<td>Spring Street</td>
<td>Peachtree Circle</td>
<td>6</td>
<td>5</td>
<td>4 travel lanes; center turn lane</td>
<td>Additional study is needed for intersection of Peachtree Circle and Peachtree Street. Southbound cyclists along Peachtree Street will need help making left turn onto Peachtree Circle. A potential treatment is two stage turn queue boxes for cyclists at the intersection.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Due to high frequency of right turns on to northbound ramp to Spring-Buford Connector, outside north bound land may need to be right turn only. Alternatively, bike lane and buffer may need to be re-configured to accommodate a dedicated right turn only lane. Additional study should be given to this intersection.
A supplement to the Connect Atlanta Plan

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABA</td>
<td>SHARED LANE MARKINGS</td>
<td>Peachtree Street</td>
<td>Peachtree Circle</td>
<td>West Peachtree Street</td>
<td>6</td>
<td>6</td>
<td>5 travel lanes; turn lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ABB | BUFFERED BIKE LANE | Peachtree Street | Peachtree Circle | West Peachtree Street | 4 | 6 | 3 travel lanes; turn lane
Remove existing median |
| | | | | | | | |
| A9 | BIKE LANES | 17th Street | Peachtree Street | West Peachtree Street | 3 | 2 | 2 travel lanes |

As required in agreement between the City of Atlanta and Ansley Park Civic Association, 17th Street between Peachtree Street and West Peachtree Street should be re-striped to two travel lanes. Doing so creates roadway space for bike lanes.

The project should be coordinated with the Ansley Park Civic Association.

As properties develop along either side of this cross section, there may be an opportunity to increase the width of the roadway from curb to curb. The increased width could expand travel lane and bike facility configuration options.

Additional Notes

1. The segment from the end of the bike lanes on Peachtree Circle to Peachtree Street should have shared lane markings added. These can be added as a spot treatment or applied when Peachtree Circle is re-striped.

2. The segment from the end of the bike lanes on Peachtree Circle to Peachtree Street should have shared lane markings added. These can be added as a spot treatment or applied when Peachtree Circle is re-striped. Additionally, the dedicated bike lane is for vehicles making left from Peachtree Circle to southbound Peachtree Street; space can be created for bike lanes on Peachtree Circle to extend all the way to Peachtree Street.

3. 15th Street could be a connection to the MARTA station from West Peachtree Street or Peachtree Street. If designated as a bicycle connection street, shared lane markings or wayfinding signage should be used to help cyclists navigate to the primary bicycle station entrance from Arts Center Way.

4. A southbound bicycle connection is needed from 17th Street to Arts Center Way to improve bicycle access to the Arts Center MARTA station. The sidewalk along the east side of West Peachtree Street from 17th Street to Arts Center Way could be re-purposed as a raised cycle track or multi-use path to create this bicycle connection.
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street From</th>
<th>Street To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10</td>
<td>17th Street</td>
<td>Peachtree Street</td>
<td>End of back of commercial buildings</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A11</td>
<td>17th Street</td>
<td>Peachtree Circle</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>West Peachtree Street</td>
<td>Peachtree Street</td>
<td>14th Street</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

3 travel lanes; on-street parking
A supplement to the Connect Atlanta Plan

Additional Notes
1. The 14th Street and Peachtree Street intersection needs additional focus. Intersection improvements should be made to help southbound cyclists along Peachtree Street make a left turn onto 14th Street. This improved left turn for cyclists will enhance bicycle connectivity between bicycle facilities on Peachtree Street, 14th Street, and Juniper Street.
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street Description</th>
<th>Street 1</th>
<th>Street 2</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A15</td>
<td>Cycle Track</td>
<td>West Peachtree Street</td>
<td>14th Street</td>
<td>5</td>
<td>3</td>
<td>3 travel lanes; on-street parking</td>
</tr>
<tr>
<td>A16A</td>
<td>Shared Lane Markings</td>
<td>Peachtree Street</td>
<td>14th Street</td>
<td>5</td>
<td>5</td>
<td>4 travel lanes; center turn lane</td>
</tr>
<tr>
<td>A16B</td>
<td>Buffered Bike Lanes</td>
<td>Peachtree Street</td>
<td>14th Street</td>
<td>5</td>
<td>3</td>
<td>2 travel lanes; center turn lane</td>
</tr>
<tr>
<td>Cross Section ID</td>
<td>Cross Section</td>
<td>Street From</td>
<td>To</td>
<td>Existing Travel Lanes</td>
<td>Proposed Travel Lanes</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>----</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>A20</td>
<td>CYCLE TRACK</td>
<td>West Peachtree Street</td>
<td>5th Street</td>
<td>North Avenue</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>A21a</td>
<td>SHARED LANE MARKINGS</td>
<td>Peachtree Street</td>
<td>North Avenue</td>
<td>Lindon Avenue</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>A21b</td>
<td>BIKE LANES</td>
<td>Peachtree Street</td>
<td>North Avenue</td>
<td>Lindon Avenue</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>A22</td>
<td>CYCLE TRACK</td>
<td>West Peachtree Street</td>
<td>North Avenue</td>
<td>Baltimore Place</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Graphical Representation

- The graph illustrates the proposed changes to the existing roadways, focusing on the addition of cycle tracks and the reconfiguration of travel lanes.

Explanations

- At intersections, preserving curb extensions with street trees, dropping parking lanes, and providing bike lanes are suggested.
- Curb extensions between blocks are removed to create a continuous cycle track.
- The proposed cycle tracks include dedicated lanes for cyclists.

Conclusion

- The map highlights specific sections where these changes are proposed, with clear annotations for better understanding.
Cross Section ID | Cross Section | Street From To | Existing Travel Lanes | Proposed Travel Lanes | Notes
--- | --- | --- | --- | --- | ---
A47 | CYCLE TRACK | Courtland Street Ponce de Leon Avenue Ralph McGill Boulevard | 5 | 4 | Along western side of roadway and just south of the intersection of Ponce de Leon Avenue and Courtland Street, add a sidewalk where it currently does not exist. The same application should be used along the western side of this roadway and just north of the intersection of Courtland Street and Courtland Street. To accommodate this sidewalk addition with the proposed cross section, drop the buffer adjacent to the bike lane and shift the bike lane so that it is adjacent the travel lane.
A23 | BIKE LINES | Peachtree Street Lindon Avenue Pine Street | 6 | 4 | 4 travel lanes
This cross section starts midblock between North Avenue and Lindon Avenue.
A24 | CYCLE TRACK | West Peachtree Street Baltimores Place Pine Street | 2 | 1 | 1 travel lane
Across this bridge, the cantar turn lane is removed and a buffer is added between the outside travel lanes and the bike lane.
A25 | BIKE LINES | Peachtree Street Pine Street Ivan Allen Jr Boulevard | 6 | 5 | 4 travel lanes; center turn lane
Additional Notes
1. Long-term, Piedmont Avenue could be re-striped to include a buffered bike lane or cycle track. This lane re-configuration could extend from Ralph McGill Boulevard to 14th Street. A dedicated bicycle facility along Piedmont Avenue would provide a northbound alternative to Juniper Street, Courtland Street and Peachtree Street.
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street From</th>
<th>Street To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A26</td>
<td>West Peachtree Street</td>
<td>Ivan Allen Jr Boulevard</td>
<td>4</td>
<td>3</td>
<td>3 travel lanes Add directional shared lane markings for inside southbound travel lane for wayfinding purposes. This intent with these shared lane markings is to help cyclists make the connection between Porter Place, West Peachtree Street, and Ivan Allen Jr Boulevard. Add additional wayfinding signs at West Peachtree Street and Ivan Allen Jr Boulevard to help cyclists understand route options.</td>
</tr>
<tr>
<td>A27</td>
<td>West Peachtree Street</td>
<td>Piers Street</td>
<td>5</td>
<td>4</td>
<td>2 travel lanes; 2 bus only lanes Drop bus only lane and add handicap parking in front of federal building along West Peachtree Street. Pedaling relocated from Ivan Allen Jr Boulevard.</td>
</tr>
<tr>
<td>A48</td>
<td>Peachtree Street</td>
<td>Porter Place</td>
<td>West Peachtree Street</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>A28</td>
<td>Peachtree Street</td>
<td>West Peachtree Street</td>
<td>John Portman Boulevard</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Concept Summary

The overall design goal for these intersections is to create safe and comfortable connections at a junction of several important bike routes. This location connects Midtown, Downtown, and the adjacent neighborhoods east and west. Below is a summary of the different routes and their connection to these intersections:

- **West Peachtree Street/Porter Place**: People will be able to use Porter Place to connect between Peachtree Street/Peachtree Center Avenue and West Peachtree/Irwin Allen Jr. Boulevard.
- **Peachtree Center Avenue**: The two-way cycle track will connect people from Midtown into Downtown, or vice versa, or to bike lanes that run east-west along Ivan Allen/Ralph McGill.
- **Peachtree Street**: Bike lanes will run north and south across the bridge into Midtown. South of Porter Place, people will be able to use the Peachtree Center Avenue cycle track or the shared lane marking along Peachtree Street to the Portman Boulevard cycle track.
- **Ivan Allen Jr. Boulevard/Ralph McGill Boulevard**: Bike lanes along both streets will connect to the Peachtree Street and the Peachtree Center Avenue cycle tracks.
- **Courtland Street**: People biking southbound along Courtland Street using the cycle track will be able to continue southbound using a protected facility along Peachtree Center Avenue.

This image is not to scale and is presented for illustrative purposes only.
Alternative Westbound Treatment

A bike box for westbound bicyclists will give them priority at the intersection and the ability to turn left and enter the two-way cycle track along Peachtree Center Avenue, continue straight along Ivan Allen Jr. Boulevard using the westbound bike lane, or make a right to the northbound bike lane along Peachtree Street. Additionally with this treatment, the bike box is used in place of a right turn only lane for vehicles. Westbound vehicular traffic will use have one travel lane and be able to turn left, continue straight, or turn right.

- **Green pavement markings can be applied at intersections to enhance the visibility of bicyclists, improve wayfinding, and help them navigate intersections safely.**

- **Southbound bike lanes end at Porter Pl with shared lane markings extending south along Peachtree St. to the John Portman Blvd. two-way cycle track.**

- **Concentration of Peachtree St. from 6 to 7 lanes creates space for bike lanes.**

- **A contra-flow bike lane provides two-way bicycle traffic (one-way for vehicles) along Porter Pl. between Wurt Peachtree St. and Peachtree St/Peachtree Center Ave.**

- **Two-stage turn box facilitates bicyclists transitions between bike facilities.**

- **A bike ramp for westbound bicyclists along Ralph McGill Blvd will help them queue at the intersection to turn north on to Peachtree St. or continue south along Peachtree Center Ave. two-way cycle track. Also, see alternative treatment for this intersection approach on this page.**

- **A user-activated signal, such as a rectangular rapid flashing beacon (RRFB), will help facilitate bicycle and pedestrian crossings at Peachtree St. and Peachtree Center Ave.**
Peachtree-Ralph McGill-Peachtree Center-Courtland Intersection Concepts
Part 2: Ralph McGill at Courtland

Green pavement markings can be applied where vehicular lanes and bicycle facilities intersect to raise awareness of bicycle lane
movements. In this image, green pavement markings are applied where vehicular traffic may enter a dedicated right-turn only
lane while the bike lane continues along the street. This application is similar to the treatment for the eastbound cycle track
along Ralph McGill Boulevard as it approaches the intersection at Courtland Street.

Utilize existing slip lane as
cycle track transition to Ralph
McGill Blvd.

Second westbound lane is
removed to provide one-way
cycle tracks.

On-street parking is
maintained while a 4 to 3 lane
conversion provides space for
bike lanes.

The outside westbound lane
becomes a right-turn only lane.

Green pavement increases
visibility of bicyclists at
intersection or conflict points.

This image is not to scale and is presented for illustrative
purposes only.
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
</table>
| A43 | Centennial Olympic Park Drive | Marietta St. | Phillips Arena | 4 | 2 | 2 travel lanes
On-street parking lanes may be designed to be on-street parking during non-avenue periods and travel lanes or loading lanes during events.
If Centennial Olympic Park Drive is converted from one way to two way, the cross section can be changed from two southbound travel lanes to one southbound travel lane and one northbound travel lane. |
| A44 | Centennial Olympic Park Drive | Phillips Arena | Martin Luther King Jr. Drive | 4 | 2 | 2 travel lanes
On-street parking lanes may be designed to be on-street parking during non-avenue periods and travel lanes or loading lanes during events.
If Centennial Olympic Park Drive is converted from one way to two way, the cross section can be changed from two southbound travel lanes to one southbound travel lane and one northbound travel lane. |
| A45 | Centennial Olympic Park Drive | Martin Luther King Jr. Drive | Chapel Street | 5 | 4 | 4 travel lanes |
| A46 | Centennial Olympic Park Drive | Chapel Street | Nelson Street | 4 | 3 | 3 travel lanes |
A supplement to the Connect Atlanta Plan

Cross Section ID

A29
- **Street**: Gilman Street
- **From**: Peachtree Center Avenue
- **To**: Courtland Avenue
- **Existing Travel Lanes**: 3
- **Proposed Travel Lanes**: 2
- **Notes**: 2 travel lanes; on-street parking both sides of street

A30
- **Street**: Courtland Street/Washington Street
- **From**: Gilman Street
- **To**: Memorial Drive
- **Existing Travel Lanes**: 4
- **Proposed Travel Lanes**: 3
- **Notes**: 3 travel lanes

Additional Notes

1. The Atlanta Downtown Improvement District (ADID) is currently working on a streetscape and plaza project for Peachtree Street near the Five Points MARTA station. Specifically, ADID is developing concepts for the segment of Peachtree Street from Martin Luther King Jr. Boulevard to Marietta Street. The overall goal for this segment is to design a street environment that is more supportive of transit and pedestrians. With the emphasis on pedestrians, low vehicular volumes, and speeds, the street will likely not need a dedicated bike facility. However, as designs are developed, they should consider design elements that support a bicycle connection to the Five Points MARTA station.

2. Once the Atlanta Streetcar construction is completed, a bicycle facility connection should be developed to connect cyclists between Walton Street and Auburn Avenue and Edgewood Avenue.

3. A new Georgia State MARTA station entrance has been proposed at Courtland Avenue. If this station entrance is developed, this entrance should be developed as the primary bicycle entrance for the station.
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street 1</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A31</td>
<td>Peachtree Street</td>
<td>Martin Luther King Jr. Boulevard</td>
<td>Memorial Drive</td>
<td>4</td>
<td>3</td>
<td>2 travel lanes; center turn lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A32</td>
<td>Memorial Drive</td>
<td>Peachtree Street</td>
<td>Fraser Street</td>
<td>5</td>
<td>3</td>
<td>2 travel lanes; center turn lane</td>
</tr>
</tbody>
</table>

5.0 Minutes
0.75 Miles
A supplement to the Connect Atlanta Plan

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A33</td>
<td>BUFFERED BIKE LANES</td>
<td>Whitehall Street</td>
<td>Peachtree Street</td>
<td>Interstate 20</td>
<td>4</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td>A34</td>
<td>MULTIPLE PATH</td>
<td>Potas Street</td>
<td>Walker Street</td>
<td>Chapel Street</td>
<td>4</td>
<td>4</td>
<td>4 travel lanes</td>
</tr>
</tbody>
</table>

The buffer between the multi-use path and the roadway should be preserved and expanded where right-of-way allows. The buffer increases separation between path users and vehicles and increases path user comfort.

Additional Notes
1. The intersection of Walker Street and Peters Street requires future study. The alignment and transition between the two-way cycle track along Walker Street and the multi-use path along Peters Street needs additional consideration.
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A35</td>
<td>MULTI USE PATH</td>
<td>Whitehall Street</td>
<td>Chapel Street</td>
<td>Oak Street</td>
<td>5</td>
<td>4</td>
<td>4 travel lanes No buffer between the path and the roadway is shown because of the constrained right-of-way conditions along the corridor. If additional right-of-way is available when the project is developed, a buffer between the path and the roadway should be provided.</td>
</tr>
<tr>
<td>A36</td>
<td>BIKE LAKES</td>
<td>Murphy Avenue</td>
<td>Interstate 20</td>
<td>Lee Street</td>
<td>3</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td>A37</td>
<td>MULTI USE PATH</td>
<td>Whitehall Street</td>
<td>Oak Street</td>
<td>Ralph David Abernathy Boulevard</td>
<td>4</td>
<td>3</td>
<td>2 travel lanes; center turn lane No buffer between the path and the roadway is shown because of the constrained right-of-way conditions along the corridor. If additional right-of-way is available when the project is developed, a buffer between the path and the roadway should be provided.</td>
</tr>
</tbody>
</table>
Concept Summary

The proposed multi-use path around the West End MARTA station will provide a protected bikeway facility around the station. Additionally, the proposed path will extend from the station south to the I-75/85 interchange or north to Castleberry Hill and Downtown. The multi-use path around the station can also be used to connect to the bike lanes along Ralph David Abernathy Blvd. or Murphy Ave. bike lanes to the east of the station.
West End MARTA Station Intersection Concepts
Part 1: Ralph David Abernathy Blvd. from Lee St. to Whitehall St.

The existing sidewalk is enhanced to provide a multi-use path between Lee St. and Whitehall St.

The existing sidewalk does not have sufficient width to accommodate a sidewalk and multi-use path. In order to accommodate the proposed changes, the curb will need to be extended into the travel lane or the remaining wall will need to be moved towards the parking lot.

The third northbound lane is removed to provide a multi-use path along Lee St. and the western edge of the MARTA campus.

Bicyclists queue on the sidewalk as they wait to cross this intersection using a diagonal crossing to the path on the opposite side.

This image is not to scale and is presented for illustrative purposes only.
A supplement to the Connect Atlanta Plan

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A38</td>
<td>MULTI-USE PATH</td>
<td>Loe Street</td>
<td>Ralph David Abernathy Boulevard Murphy Avenue</td>
<td>5</td>
<td>4</td>
<td>4 travel lanes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10'</td>
<td>10'</td>
<td>10'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Murphy Avenue</td>
<td>Loe Street</td>
<td>Allene Avenue</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10'</td>
<td>10'</td>
<td>10'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Murphy Avenue</td>
<td>Allene Avenue</td>
<td>Atlanta Beltline</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10'</td>
<td>10'</td>
<td>10'</td>
</tr>
</tbody>
</table>

Obstacles and soil must be cleared from the edge of the roadway to create the proposed roadway width. The extra roadway width will allow the existing travel lanes to be preserved while adding bike lanes.
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street From</th>
<th>Street To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A41</td>
<td></td>
<td>Lee Street</td>
<td>Murphy Avenue</td>
<td>5</td>
<td>4</td>
<td>4 travel lanes Rights-of-way may need to be acquired to accommodate the new street trees and multi-use path. Coordinate with GDOT and MARTA.</td>
</tr>
<tr>
<td></td>
<td>A42</td>
<td>Murphy Avenue</td>
<td>Atlanta BeltLine</td>
<td>2</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
</tbody>
</table>

Map:
- **10,530 AADT (GDOT, 2011)**
- **3,950 AADT (GDOT, 2011)**
- **4,160 AADT (Google Earth, 2007)**

Legend:
- **Lee Street**
- **Murphy Avenue**
- **Sylvan Road**
- **Peachtree Street**
- **Bonnie Brae Avenue**
- **Elbert Street**
- **Brookline Street**
- **Warner Street**
- **Woodrow Street**
- **Atlanta BeltLine**

Coordinate System:
- **0.75 Miles**
- **2.5 Minutes**
- **0.375**
Overview
Corridor B is the shortest of the five corridors at 3.6 miles and one of three Cycle Atlanta corridors that cross the city exclusively from west to east. The corridor connects to two other Cycle Atlanta corridors – Corridor E and Corridor A. From the west, it starts along West Marietta Street and the northwest segment of the BeltLine, connects to Georgia Tech and Midtown, and then finishes on the eastern end of the corridor by connecting to Piedmont Park and the Eastside Trail.

Network Design
From the Atlanta BeltLine and the western end of the corridor, West Marietta Street is the only route option along the corridor that is proposed for implementation. This side of Corridor B is limited by industrial land uses and the limited number of options to cross over the active rail lines.

At Howell Mill Road, bicyclists will have two and sometimes three options to continue east along the corridor. Around Georgia Tech, cyclists will have the option of traveling along a bike lane or multi-use path along 10th Street. Bicyclists will also have the option to travel along 8th Street and Ferst Drive.

At the interstate, cyclists will be able to travel over the 10th Street bridge using a raised cycle track or over the 5th Street bridge using the existing bike lanes. Once over the interstate on 5th Street, bicyclists can continue east in the existing bike lanes to proposed protected bike facilities along West Peachtree Street, Juniper Street, and Piedmont Avenue, as well as the bike facilities along Peachtree Street.

East of the 10th Street bridge into Midtown, cyclists will have the option of continuing along 10th Street or use a protected two-way cycle track along Williams Street to 12th Street or 8th Street bike boulevards. 12th Street and 8th Street are designed as bike boulevards to offer a “low stress,” low traffic volume alternative to 10th Street. Both routes include shared lane markings along the two-way sections of the bike boulevards and contra-flow bicycle lanes along the one-way stretches of the routes.

In terms of destinations, the 12th Street bike boulevard connects to Piedmont Park and its popular off-street paths. Likewise, the 8th Street bike boulevard connects to Piedmont Park and the two-way cycle track along 10th street. People can use this cycle track to connect to the BeltLine and the Eastside Trail. Both of these routes connect to the West Peachtree Street, Peachtree Street, Juniper Street, and Piedmont Avenue bike facilities.

Facility Design
For the western portion of the corridor and around Georgia Tech, bike lanes are the primary facility type. This is largely a result of the existing street-curb-to-curb widths. Bike lanes along can be included without significantly impacting vehicular capacity. The facility exception in this area is the 10th Street multi-use path along 10th Street from Northside Drive to Fowler Drive.

In Midtown, a two-way cycle track over the 10th Street bridge and along Williams Street will allow people traveling east to enter Midtown using a protected facility. Once in Midtown, bicyclists comfortable riding along higher traffic volume streets can continue along 10th Street or riders that are more comfortable on lower traffic volume streets can use 12th Street and 8th Street. Both routes will have low motor vehicle volumes and speed and will be comfortable for most bicyclists.

One of the characteristics that will keep vehicle volumes low along 12th Street and 8th Street are the existing one-way streets along both routes. For the one-way stretches of the routes, contra-flow bike lanes will be provided to allow for two-way bike travel and one-way vehicle travel. Having the one-way streets for vehicles discourages through traffic along these streets and keeps traffic volumes low.

On the eastern edge of the corridor, a two-way cycle track will connect people traveling along the corridor to Piedmont Park, the Eastside Trail, and Virginia-Highland.
Corridor & Core and Alternative Routes

Corridor Length
- 3.6 miles
- 24 minutes by bike

Major Destinations
- Atlanta Beltline
- King Plow Arts Center
- Westside/Marist & Commercial District
- Georgia Institute of Technology
- Midtown Mile
- Piedmont Park
- Grady High School

MARTA Stations
- Midtown

neighborhoods
- Knight Park/Howell Station
- English Avenue
- Home Park
- Georgia Tech
- Midtown
- Virginia Highland

NPU
- E
- K
- L

Council Districts
- 2
- 3
- 6

Relevant Plans
- Atlanta Beltline Subarea 9 Master Plan
- Atlanta Beltline Subarea 8 Master Plan
- Atlanta Beltline Subarea 6 Master Plan
- Upper Westside LRT

A supplement to the Connect Atlanta Plan
Corridor B Projects

The projects listed in the table below are the projects currently programmed for construction along the corridor as well as new projects proposed as part of the Cycle Atlanta: Phase 1.0 Study. Facility type, the street that the project applies to, a description of the start and end points for the projects, and a summary cost estimate are provided. Additional project cost information is provided in the Appendix for each project.

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Cross Section(s)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5021</td>
<td>Bike Boulevard</td>
<td>8th Street</td>
<td>Brady Avenue</td>
<td>Northside Drive</td>
<td>I1</td>
<td>$1,903</td>
</tr>
<tr>
<td>5022</td>
<td>Bike Boulevard</td>
<td>8th Street</td>
<td>Northside Drive</td>
<td>Nashville</td>
<td>B5</td>
<td>$127,274</td>
</tr>
<tr>
<td>5023</td>
<td>Multi-Use Path</td>
<td>10th Street</td>
<td>Howell Mill Road</td>
<td>Northside Drive</td>
<td>B23</td>
<td>$153,600</td>
</tr>
<tr>
<td>5024</td>
<td>Multi-Use Path</td>
<td>10th Street</td>
<td>Howell Mill Drive</td>
<td>Riverside</td>
<td>B27</td>
<td>$674,685</td>
</tr>
<tr>
<td>5025</td>
<td>Bike Lane</td>
<td>First Drive</td>
<td>Henrietta Avenue</td>
<td>Atlantic Drive</td>
<td>B6, B8</td>
<td>$13,903</td>
</tr>
<tr>
<td>5026</td>
<td>Cycle Track</td>
<td>Williams Street</td>
<td>12th Street</td>
<td>Piedmont Avenue</td>
<td>B10, B11, B12, B13, B14, B15</td>
<td>$135,642</td>
</tr>
<tr>
<td>5027</td>
<td>Bike Boulevard</td>
<td>12th Street</td>
<td>Williams Street</td>
<td>Piedmont Avenue</td>
<td>B10, B11, B12, B13, B14, B15</td>
<td>$29,428</td>
</tr>
<tr>
<td>5028</td>
<td>Bike Boulevard</td>
<td>8th Street</td>
<td>Williams Street</td>
<td>10th Street</td>
<td>R16, R17, B18, B19, B20, B21, B22</td>
<td>$22,270</td>
</tr>
<tr>
<td>5029</td>
<td>Bike Lane</td>
<td>14th Street</td>
<td>Howell Mill Road</td>
<td>Hampden Avenue</td>
<td>B24</td>
<td>$45,586</td>
</tr>
<tr>
<td>5030</td>
<td>Cycle Track</td>
<td>Kanuga Street</td>
<td>Virginia Avenue</td>
<td>Monroe Drive</td>
<td>B25</td>
<td>$113,325</td>
</tr>
</tbody>
</table>

Notes:
1. 1000 series: Facilities to be built in 2013
2. 2000 series: Facilities to be built in 2014
3. 3000 series: Facilities to be built in 2015
4. 4000 series: Unfunded high-priority projects we hope to fund by 2016
5. 5000 series: Facilities developed as part of the Cycle Atlanta Phase 1.0 Study; 5020 - 5039 is for Corridor A projects, 5040 - 5069 is for Corridor B projects, and 5070 - 5099 is for Corridor C projects
6. Cost estimates include an estimate of probable cost for construction, design cost (25% of construction cost), and contingency (10% of construction cost)
Corridor B Design Schematics

The cross sections, plan concepts, and accompanying notes provide a description for the design of the proposed facilities along the corridor. A typical cross section has been developed for every segment of the corridor where a facility is proposed as part of the Cycle Atlanta: Phase 1.0 Study and where projects have been programmed but the facility design has not been finalized. Cross sections were not developed for corridor segments that already have a facility, where the facility has already been programmed for construction, or where the facility has already been designed through another project or planning effort.

The typical cross sections and plan concepts form the basis for the cost estimates presented on the previous page. Each project consists of one or more cross sections or plan concept segments. The design schematics were used to provide details about facility design for projects, particularly where cross sections change along the corridor or intersection design is more complex.

The legend below provides a summary of the different symbols and line types used to describe existing conditions or proposed features along the corridor.

Design Schematics Legend

<table>
<thead>
<tr>
<th>EXISTING BIKE FACILITIES</th>
<th>PROPOSED BIKE FACILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Lane Marking</td>
<td>Shared Lane Marking</td>
</tr>
<tr>
<td>Bike Lane</td>
<td>Bike Lane</td>
</tr>
<tr>
<td>Multi-Use Path</td>
<td>Multi-Use Path</td>
</tr>
<tr>
<td></td>
<td>Bike Boulevard</td>
</tr>
<tr>
<td></td>
<td>Buffered Bike Lane</td>
</tr>
<tr>
<td></td>
<td>Alternative Facility Options</td>
</tr>
<tr>
<td></td>
<td>Protected Cycle Track</td>
</tr>
<tr>
<td></td>
<td>Raised Cycle Track</td>
</tr>
</tbody>
</table>

STUDY FOCUS FEATURES

- Core Study Corridor
- Alternative Study Corridor
- Atlanta BeltLine Corridor
- MARTA Rail Station

ANNOTATION SYMBOLS

- Cross Section Application Location
- Corridor Connection to Atlanta BeltLine
- Map Annotation
- Annual Average Daily Traffic
- Cross Section Segment To/From Point
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td></td>
<td>West Marietta</td>
<td>Boulevard</td>
<td>Perry Boulevard</td>
<td>4</td>
<td>3</td>
<td>3 travel lanes; center turn lane.</td>
</tr>
</tbody>
</table>

Truck traffic is significant along this segment and it is a designated truck route. Travel lanes should be a minimum of 11’ and 12’ where possible. The minimum bike lane width is 4’.
A supplement to the Connect Atlanta Plan

Cross Section ID	Cross Section	Street	From	To	Existing Travel Lanes	Proposed Travel Lanes	Notes
B2 | Buffered Bike Lanes | West Marietta Street | Perry Boulevard | Brady Avenue | 4 | 3 | 2 travel lanes; center turn lane
B3 | Bike Lane / Shared Lanes Markings | West Marietta Street | Brady Avenue | Marietta Street | 2 | 2 | 2 travel lanes
B4 | Shared Lanes Markings | 8th Street | Brady Avenue | Howell Mill Road | 2 | 2 | 2 travel lanes

Additional Notes
The intersection of West Marietta Street, Brady Avenue, and 8th Street requires future study. The alignment and transition between the intersecting bikeways needs additional consideration to help cyclists navigate the intersection comfortably and safely.
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B20</td>
<td>8th Street</td>
<td>Howell Mill Road</td>
<td>Northside Drive</td>
<td>2</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td>B23</td>
<td>10th Street</td>
<td>Howell Mill Road</td>
<td>Northside Drive</td>
<td>4</td>
<td>4</td>
<td>4 travel lanes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A multi-use path can be created along the southern edge of the roadway as properties re-develop. Instead of acquiring new development to add on-street parking, this development along the northern edge of the roadway, new development should improve and expand the sidewalk to accommodate a multi-use path. The buffer between the multi-use path and the roadway should be preserved and expanded where right-of-way allows. The buffer increases separation between path users and vehicles and increases path user comfort.</td>
</tr>
<tr>
<td>B24</td>
<td>14th Street</td>
<td>Howell Mill Road</td>
<td>Memorial Avenue</td>
<td>4</td>
<td>3</td>
<td>2 travel lanes; center turn lane</td>
</tr>
</tbody>
</table>

![Map of Cycle Atlanta Phase 1.0 Study with highlighted sections B20, B23, and B24.](image-url)
Northside at 8th and Tech Parkway Intersection Concepts

Overview

Concept Summary

The goal with this concept is to provide a safe and convenient bicycle connection from the Marietta corridor to Georgia Tech and Tech Parkway. Currently, the Northside Drive and Tech Parkway Intersection serves as a significant barrier between the area west of Georgia Tech and Marietta. With these intersection improvements, bicyclists will be able to cross Northside Drive more easily and with a greater level of safety.

The intersection at 8th Street and Northside Drive includes a new segment of 8th Street from Northside Drive to Carman Street on campus. This new street or path segment will be for bicyclists and pedestrians only and allow bicyclists to connect to the Hemphill Avenue and Front Drive bike lanes that continue east to Midtown. To help bicyclists and pedestrians cross at 8th Street and Northside Drive, the intersection will be signalized and a median refuge island will be installed. Lastly, the travel lanes for Northside Drive and Tech Parkway are re-aligned to accommodate the new intersection design and the conversion of Tech Parkway to a two-way street (one northbound lane and one southbound lane).

At the intersection of Tech Parkway, Northside Drive, and Hampton Drive, a bicycle and pedestrian crossing is proposed. This new crossing will allow pedestrians and bicyclists to more easily cross from the northern end of the Tech Parkway greenway and the Marietta Street corridor. To help with crossing, Northside Drive, a special bicycle and pedestrian signal will be installed to alert motor vehicles to stop as they cross. Once across Northside Drive, bicyclists will be able to use Hampton Street or 3rd Street to connect to Marietta Street and Howell Mill Road.

This image is not to scale and is presented for illustrative purposes only.
Northside at 8th and Tech Parkway Intersection Concepts
Part 1: Northside Drive and 8th Street

- Limit vehicular access on 8th Street to right turn only.
- Median permeable to bicyclists and pedestrians.
- Full traffic signal or hybrid signal at intersection will stop traffic on Northside Drive. The signal should only be bicycle or pedestrian actuated.
- Access should be limited to pedestrians and cyclists only at this entrance to campus.
- New access to Northside Drive for pedestrians and cyclists.
- Travel lanes along Northside Drive and Tech Parkway are re-configured to accommodate the new intersection design and the conversion of the eastern side of Tech Parkway to a two-lane street (one northbound lane and one southbound lane).

This image is not to scale and is presented for illustrative purposes only.
Northside at 8th and Tech Parkway Intersection Concepts
Part 2: Northside Drive at Tech Parkway-Hampton Street-3rd Street

The 3rd Street Bicycle Boulevard provides a connection between Tech Parkway and 8th Street/Howell Mill Road.

Hampton Street provides a connection between Tech Parkway and Marietta Street.

Eastern side of Tech Parkway is converted to a two-lane street (one northbound lane and one southbound lane).

Western side of Tech Parkway is converted to a two-lane street (one northbound lane and one southbound lane).

The reconfiguration of Marietta Street from four lanes to three creates space for bike lanes.

A full signal or Hybrid BTE box stops southbound traffic along Northside Drive.

The intent for the intersection of Hampton Street/Tech Parkway and Northside Drive is similar to this photo - to provide a signalized street crossing for cyclists and pedestrians to cross safely.

This image is not to scale and is presented for illustrative purposes only.
The buffer between the multi-use path and the roadway should be preserved and expanded where right-of-way allows. This buffer increases the separation between path users and vehicles and enhances path user comfort.
Williams Street at 8th and 10th Street Intersection Concepts

Overview

Concept Summary

The intent with this concept is to provide a protected facility across the Interstate along 10th Street and to connect the bicycle boulevards along 8th Street and 12th Street. Over the 10th Street bridge, a raised cycle track along the southern side of the bridge will provide a protected and dedicated bikeway facility for cyclists to cross the Interstate. West of the Interstate, cyclists can continue west using the proposed multi-use path along 10th Street to Georgia Tech, Home Park, and Northside Drive. East of the Interstate, cyclists can use a two-way cycle track along Williams Street to connect to the 8th Street or 12th Street Bicycle Boulevards.

The two-way cycle track connection along Williams Street between 8th Street and 12th Street also provides cyclists with alternative route options to the segment of 10th Street from the Interstate to Peachtree Street. This stretch of 10th Street has high traffic volumes and motor vehicle speeds, which are difficult conditions for most cyclists to navigate. The route design provides a bicycle connection between areas west of Midtown and Midtown that appeals to a wider range of cyclists.
Williams Street at 8th and 10th Street Intersection Concepts
Part 2: Williams Street at 10th Street

The raised cycle track approach to 10th Street along Williams will function similarly to the case above. It is designed to provide vertical separation from motor vehicles. It also provides space for pedestrians and bicyclists to walk before crossing Williams Street to the 10th Street bridge.

Intersection crossing markings highlight bicyclist's intended path of travel and potential conflicts.

The raised cycle track approach to the intersection provides additional separation between bicyclists and motor vehicles.

The shared use path across the bridge provides a protected bikeway crossing over the intersection.

A turning movement study should be conducted to determine the appropriate turning movements allowed with each travel lane.
A supplement to the Connect-Atlanta Plan

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B10</td>
<td>BIKE LANE</td>
<td>12th Street</td>
<td>Williams Street</td>
<td>Spring Street</td>
<td>2</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td>B11</td>
<td>SHARED LANE MARKINGS</td>
<td>12th Street</td>
<td>Spring Street</td>
<td>West Peachtree Street</td>
<td>2</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td>B12</td>
<td>SHARED LANE MARKINGS / CENTER LANE</td>
<td>12th Street</td>
<td>West Peachtree Street</td>
<td>Crescent Avenue</td>
<td>1</td>
<td>1</td>
<td>1 travel lane</td>
</tr>
<tr>
<td>B13</td>
<td>SHARED LANE MARKINGS</td>
<td>12th Street</td>
<td>Crescent Avenue</td>
<td>Peachtree Street</td>
<td>2</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
</tbody>
</table>

Additional Notes

1. The Intersection at 12th Street and West Peachtree Street will be re-aligned.

If this segment is converted from one-way to two-way, traffic volume management strategies should be considered for the 12th Street Drive Boulevard.

Center line should be solid at intersections or dashed midblock.
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street From</th>
<th>Street To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B14</td>
<td>12th Street</td>
<td>Peachtree Street</td>
<td>2</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td></td>
<td>Juniper Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B15</td>
<td>12th Street</td>
<td>Juniper Street</td>
<td>2</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td></td>
<td>Piedmont Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Notes

1. The intersection at 12th Street and Piedmont Avenue needs bicycle detection and bicycle push buttons to allow cyclists to activate the signal.
Cross Section ID

Cross Section

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street From</th>
<th>Street To</th>
<th>Existing Travel Lanes</th>
<th>Proposed Travel Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B16</td>
<td>8th Street</td>
<td>Williams Street</td>
<td>2</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring Street</td>
<td></td>
<td></td>
<td>Center line should be solid at intersections at dashed midblock.</td>
</tr>
<tr>
<td>B17</td>
<td>8th Street</td>
<td>Spring Street</td>
<td>2</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West Peachtree Street</td>
<td></td>
<td></td>
<td>Center line should be solid at intersections at dashed midblock.</td>
</tr>
<tr>
<td>B18</td>
<td>8th Street</td>
<td>West Peachtree Street</td>
<td>1</td>
<td>1</td>
<td>1 travel lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cypress Street</td>
<td></td>
<td></td>
<td>If this segment is converted from one-way to two-way, traffic volume management strategies should be considered for the 8th Street bike boulevard.</td>
</tr>
<tr>
<td>B19</td>
<td>8th Street</td>
<td>Cypress Street</td>
<td>1</td>
<td>1</td>
<td>1 travel lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peachtree Street</td>
<td></td>
<td></td>
<td>If this segment is converted from one-way to two-way, traffic volume management strategies should be considered for the 8th Street bike boulevard.</td>
</tr>
<tr>
<td>Cross Section ID</td>
<td>Street</td>
<td>From</td>
<td>To</td>
<td>Existing Travel Lanes</td>
<td>Proposed Travel Lanes</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>B20</td>
<td>8th Street</td>
<td>Peachtree</td>
<td>Piedmont Avenue</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B21</td>
<td>8th Street</td>
<td>Piedmont Avenue</td>
<td>Myrtle Street</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B22</td>
<td>Myrtle Street</td>
<td>8th Street</td>
<td>10th Street</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
A two-way cycle track along 10th Street will provide a direct, on-street bikeway connection from the Eastside Trail to Piedmont Park and Midtown. When completed, it will function similarly to the two-way cycle track above with a buffer and bollards separating cyclists from motor vehicles.

Additional Notes:
1. A two-way cycle track along 10th Street will be constructed along 10th Street from Piedmont Road to Monroe Drive. The project will be constructed in two phases. The first phase will extend from Monroe Drive to Charles Allen Drive. The second phase will extend from Charles Allen Drive to Piedmont Avenue.
Corridor C. Grove Park – Downtown – Poncey-Highland
Overview

Corridor C is the most residential of the five corridors. With the exception of the stretch of the route through Downtown, the majority of the corridor traverses residential neighborhoods to the west and east of Downtown. The corridor connects to two other corridors including Corridor A and Corridor E.

Network Design

From the west, bike lanes along Joseph Boone Boulevard will connect the Bankhead, Hunter Hills, Washington Park, English Avenue, and Vine City neighborhoods to Downtown. This route also connects to the bike boulevard along James P. Brawley Drive.

This route is also notable for its potential for future connections to the Atlanta BeltLine trail and transit. Currently, the Atlanta BeltLine alignment includes active rail lines and significant grade changes between Boone Boulevard and the Atlanta BeltLine. MARTA also crosses under Boone Boulevard as it travels to the Bankhead and Ashby MARTA stations. However, a new MARTA station is proposed at the intersection of Boone Boulevard and the Atlanta BeltLine. When the station is built along with the BeltLine trail, the bike lanes will connect people to the Atlanta BeltLine trail and the MARTA station.

From Northside Drive, cyclists will be able to use the bike lanes along Ivan Allen Jr. Boulevard to cross over the railroad tracks and connect to bike lanes along Marietta Street, a two-way cycle track along Luckie Street and the future Street Car route along Luckie Street.

Continuing east, bike lanes along Ivan Allen Jr. Drive pass the Georgia Aquarium and the site of the Civil Rights Museum as the route extends into Downtown. Within Downtown, bicyclists will be able to connect to the cycle track along West Peachtree Street, use the contra-flow bike lane along Porter Place to connect to the two-way cycle track along Peachtree Center Avenue, bike lanes along Peachtree Street, or cycle tracks along Courtland Street and Piedmont Avenue.

East of Piedmont Avenue, bicyclists will be able to use a bike lane to ride to the Civic Center, Georgia Power Headquarters, Atlanta Medical Center, the Old Fourth Ward neighborhood, the Atlanta BeltLine Eastside Trail, and the Freedom Parkway Trail.

Facility Design

With the exception of a buffered bike lane along a one-block stretch of Ralph McGill Boulevard, this corridor is proposed to be served exclusively with bike lanes. Limited street width along the corridor precludes more protected facility types like cycle tracks.

This corridor will be the least expensive and easiest to implement due to the relative simplicity of roadway modifications. Most of the route will require re-configuring travel lanes to provide bike lanes.

The intersections along the corridor are also relatively simple to modify to serve vehicles and cyclists, with the exception of the Ralph McGill-Peachtree-Peachtree Center Avenue-Courtland intersection. For details about this intersection, see the Corridor A chapter.
Corridor C Core and Alternative Routes

Corridor Length
- 4.5 miles
- 30 minutes by bike

Major Destinations
- Atlanta Beltline
- Georgia World Congress Center
- Georgia Aquarium
- Atlanta Civic Center
- Georgia Power Headquarters
- Atlanta Medical Center
- Historic Fourth Ward Park
- Jimmy Carter Library and Museum
- Eastside Trail
- Freedom Parkway Trail

MARTA Stations
- Civic Center

Neighborhoods
- Bankhead
- Grove Park
- Martin HBS
- Washington Park
- English Avenue
- Vine City
- Downtown
- Old Fourth Ward
- Poncey-Highland

NPU
- K
- L
- M
- N

Council Districts
- 2
- 3

Relevant Plans
- Atlanta Beltline Subarea 10 Master Plan
- Atlanta Beltline Subarea 5 Master Plan
- Vine City/Washington Park LC
- Georgia World Congress Center Master Plan
- Old Fourth Ward Master Plan
- Imagine Downtown ENCORE (I)
Corridor C Projects

The projects listed in the table below are the projects currently programmed for construction along the corridor, as well as new projects proposed as part of the Cycle Atlanta: Phase 1.0 Study. Facility type, the street that the project applies to, a description of the start and end points for the projects, and a summary cost estimate are provided. Additional project cost information is provided in the Appendix for each project.

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Cross Section(s)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5040</td>
<td>Bike Lane</td>
<td>Joseph E Boone Boulevard</td>
<td>Holly Street</td>
<td>Northside Drive</td>
<td>C1, C11, C12</td>
<td>$216,799</td>
</tr>
<tr>
<td>5041</td>
<td>Bike Lane</td>
<td>Ivan Allen Jr Boulevard</td>
<td>Centennial Olympic Park Drive</td>
<td>Williams Street</td>
<td>C3</td>
<td>$16,832</td>
</tr>
<tr>
<td>5042</td>
<td>Contra-Flow Lane</td>
<td>Four Park Place</td>
<td>West Peachtree Street</td>
<td>Peachtree Street</td>
<td>C14</td>
<td>$4,276</td>
</tr>
<tr>
<td>5043</td>
<td>Bike Lane-Buffed Bike Lane</td>
<td>Ivan Allen Jr Boulevard</td>
<td>West Peachtree Street</td>
<td>Courtland Street</td>
<td>C13</td>
<td>$40,354</td>
</tr>
<tr>
<td>5044</td>
<td>Bike Lane</td>
<td>Ralph McGill Boulevard</td>
<td>Courtland Street</td>
<td>Freedom Parkway</td>
<td>C5, C6, C7, C8, C9, C10</td>
<td>$80,419</td>
</tr>
</tbody>
</table>

Notes:
1. 1000 series: Facilities to be built in 2013
2. 2000 series: Facilities to be built in 2014
3. 3000 series: Facilities to be built in 2015
4. 4000 series: Unfunded high-priority projects we hope to fund by 2016
5. 5000 series: Facilities developed as part of the Cycle Atlanta: Phase 1.0 Study. 5000-5009 is for Corridor A projects, 5040-5049 is for Corridor B projects, 5040-5049 is for Corridor C projects, and 5080-5089 is for Corridor D projects.
6. Cost estimates include an estimate of probable costs for construction, design cost (25% of construction cost), and contingency cost (20% of construction costs). Construction costs can include re-stripping costs, signal improvements, new pavement markings, and multi-use path construction. Construction costs do not include resurfacing costs. Cost estimates for 1000 to 4000 series projects are not provided because they have already been funded, are in the process of being designed, or are in the process of being constructed.
Corridor C Design Schematics

The cross sections, plan concepts, and accompanying notes provide a description for the design of the proposed facilities along the corridor. A typical cross section has been developed for every segment of the corridor where a facility is proposed as part of the Cycle Atlanta: Phase 1.0 Study and where projects have been programmed but the facility design has not been finalized. Cross sections were not developed for corridor segments that already have a facility, where the facility has already been programmed for construction, or where the facility has already been designed through another project or planning effort.

The typical cross sections and plan concepts form the basis for the cost estimates presented on the previous page. Each project consists of one or more cross section or plan concept segments. The design schematics were used to provide details about facility design for projects, particularly where cross sections change along the corridor or intersection design is more complex.

The legend below provides a summary of the different symbols and line types used to describe existing conditions or proposed features along the corridor.

Design Schematics Legend

<table>
<thead>
<tr>
<th>EXISTING BIKE FACILITIES</th>
<th>PROPOSED BIKE FACILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Lane Marking</td>
<td>Shared Lane Marking</td>
</tr>
<tr>
<td>Bike Lane</td>
<td>Bike Boulevard</td>
</tr>
<tr>
<td>Multi-Use Path</td>
<td>Multi-Use Path</td>
</tr>
<tr>
<td></td>
<td>Protected Cycle Track</td>
</tr>
<tr>
<td></td>
<td>Raised Cycle Track</td>
</tr>
</tbody>
</table>

STUDY FOCUS FEATURES

- Core Study Corridor
- Alternative Study Corridor
- Atlanta BeltLine Corridor
- MARTA Rail Station

ANNOTATION SYMBOLS

- Cross Section Application Location
- Corridor Connection to Atlanta BeltLine
- Map Annotation
- Annual Average Daily Traffic
- Cross Section Segment To/From Point
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street From</th>
<th>To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>BIKE LANE</td>
<td>Joseph E. Boone Boulevard</td>
<td>Chappell Road</td>
<td>Joseph L. Lowery Boulevard</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>C11</td>
<td>BIKE LANE</td>
<td>Joseph E. Boone Boulevard</td>
<td>Joseph L. Lowery Boulevard</td>
<td>James P. Bowlby Drive</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Notes:

The Department of Watershed Management is constructing a "green street" along Joseph E. Boone Boulevard from James P. Bowlby Drive to Maple Street. The new streetscape will include sidewalks, bicycle lanes, and bio-swales to manage stormwater run-off.
Boone Blvd. and JP Brawley Intersection Concept

Overview

Concept Summary

The intersection of James P. Brawley Drive and Joseph E. Boone Boulevard is an important connection point in the bikeway network west of Downtown. The proposed bicycle boulevard along Brawley, when completed, will connect the Atlanta University Center (AUC) to Georgia Tech and the Marietta Street corridor. Additionally, the proposed bike lane improvements along Boone Boulevard will provide route options to the Atlanta Beltline and Downtown.

The intersection treatments used will help bicyclists more easily navigate the intersection and alert drivers that they should anticipate additional bicycle traffic. The treatments also illustrate how the green infrastructure streetscape is being constructed along Boone Boulevard to the east of the intersection.
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street From</th>
<th>To Street</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>DOWNHILL SHARED LANE MARKINGS / UPHILL BIKE LANE</td>
<td>Ivan Allen Jr. Boulevard</td>
<td>Centennial Olympic Park Drive</td>
<td>4</td>
<td>4</td>
<td>4 travel lanes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>46-51' ROADWAY SURFACE WIDTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>BIKE LANES</td>
<td>Ivan Allen Jr. Boulevard</td>
<td>Peachtree Street</td>
<td>4</td>
<td>3</td>
<td>2 travel lanes; center turn lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45' ROADWAY SURFACE WIDTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street From</th>
<th>To Street</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6</td>
<td>SHARED LANE MARKINGS / CONTRA FLOW BIKE LANE</td>
<td>Porter Place</td>
<td>Peachtree Street</td>
<td>1</td>
<td>1</td>
<td>1 travel lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>57' 12'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See intersection concepts on page 77.
Cross Section ID
- **C7**
 - Street: McGill Boulevard
 - From: Central Park Place
 - To: Midblock between Boulevard and Glen Iris Drive
 - Existing Vehicular Lanes: 4
 - Proposed Vehicular Lanes: 3
 - Notes: 2 travel lanes; center turn lane.

- **C9**
 - Street: McGill Boulevard
 - From: Wabash Avenue
 - To: Ashley Avenue
 - Existing Vehicular Lanes: 4
 - Proposed Vehicular Lanes: 3
 - Notes: 2 travel lanes; center turn lane.

- **C8**
 - Street: McGill Boulevard
 - From: Midblock between Boulevard and Glen Iris Drive.
 - To: Wabash Avenue
 - Existing Vehicular Lanes: 3
 - Proposed Vehicular Lanes: 2
 - Notes: 2 travel lanes; center turn lane.

- **C10**
 - Street: McGill Boulevard
 - From: Ashley Avenue
 - To: Freedom Parkway
 - Existing Vehicular Lanes: 3
 - Proposed Vehicular Lanes: 2
 - Notes: 2 travel lanes.

Map
- Atlanta Beltline
- See Interchange concept on page 80.
Ralph McGill Boulevard at Freedom Parkway Intersection Concept

Overview

- **Bicycle Interaction Crossing Markings**: help bicyclists navigate the intersection and add awareness for motor vehicle drivers that bicyclists may be present.

- **The signals are adjusted to provide a dedicated left turn phase for bicyclists and vehicles from the eastbound lane of Ralph McGill Boulevard.** The signal phase will help vehicles turn left onto Freedom Parkway and bicyclists onto the Freedom Parkway Trail.

- **Ralph McGill Boulevard is re-striped to create space for bike lanes in both directions.**

- **A bike box will help bicyclists better position themselves to make the left turn through the intersection to the Freedom Parkway Trail.**

- **The right turn only lane is re-striped to create space for the eastbound bike lane.**

- **The push buttons should be fixed to allow pedestrians or bicyclists to activate the signal at this intersection.**

Concept Summary

The goal with the intersection concept is to improve the connection between the Freedom Parkway Trail and Ralph McGill Boulevard. From the Freedom Parkway Trail, bicyclists will have a marked intersection crossing that connects the end of the trail to the proposed Ralph McGill Boulevard westbound bicycle lane. From the eastbound bicycle lane along Ralph McGill Boulevard, bicyclists will be able to use a bike box and dedicated left turn signal to cross the intersection to the Freedom Parkway Trail. Overall, the intersection treatments will help bicyclists more easily transition from on-street and off-street bicycle facilities at this intersection.

This image is not to scale and is presented for illustrative purposes only.
Overview
Corridor D is the second shortest Cycle Atlanta corridor and one of three corridors that runs exclusively from west to east. It also connects two Cycle Atlanta corridors including Corridor A and Corridor E. Like Corridor C, Corridor D is largely residential east and west of Downtown. In Downtown, the corridor connects to the Georgia Dome MARTA station, City Hall, and the State Capitol, as well as bike route options to Midtown or the business and tourist destinations.

Network Design
Along the western portion of the corridor, bicyclists will have parallel route options. The Westside Trail will provide users with a protected bike facility along Lee Street and shared lane markings and bike lanes will be installed along Martin Luther King Jr. Drive and Mitchell Street. Both routes connect to the James P. Brawley bike boulevard that connects the Atlanta University Center to Vine City, English Avenue, and ultimately the Marietta Street corridor.

Once in Downtown, people will be able to use the Westside Trail to connect to the Georgia Dome, Marietta Street, and the Centennial Olympic Park area. Bicyclists will also be able to connect to the civic and commercial destinations along the Mitchell Street bike lanes that extend from Castleberry Hills to City Hall and the Georgia State Capitol.

From the Georgia State Capitol, bicyclists will be able to take a multi-use path between Capital Avenue and Memorial Drive to connect to the Woodward Avenue bike boulevard. Currently, this bike boulevard will extend from Memorial Drive to Chastain Street. This corridor will lengthen when the industrial properties between Chastain Street and Bill Kennedy Way/BeltLine redevelop; BeltLine plans include a recommendation to extend Woodward Avenue to Bill Kennedy Way/BeltLine. This new street will provide a direct connection to the BeltLine.

Facility Design
The low-stress facilities along this corridor include the Westside Trail and the short multi-use path segment from the Georgia State Capitol to the Woodward Avenue bike boulevard. Both multi-use paths are planned to run adjacent to the streets they parallel and will not require the removal of a travel lane to implement.

For the stretch of the corridor along Martin Luther King Jr. Boulevard from the BeltLine to Brawley, the available street width prevents dedicated bicycle space on the street. To balance vehicular capacity and bicycle mobility, shared lane markings will be used along this section of the corridor.

From James P. Brawley along Martin Luther King Jr. Boulevard/Mitchell Street to Capital Avenue, cyclists will be able to use bike lane. Along this route, traffic volumes and street widths are compatible with installing a bike lane to be installed.

On the eastern side of the corridor, the Woodward Avenue bike boulevard will provide a low-stress alternative to riding along Memorial Drive. Several design strategies will be used at intersections to manage vehicular volumes and speeds while minimizing interruptions in bicyclist travel along the route. These treatments reduce the travel time along the bike boulevard and thereby increase the convenience of using the route for bicyclists.
Corridor Length

- 4.3 miles
- 28 minutes by bike

Major Destinations

- Atlanta Beltline
- Washington Park
- Breckinridge High School
- Atlanta University Center
- Georgia Dome - Georgia World Congress Center-Phipps Arena-CNN Center
- US District Court Clerk
- Fulton County Government Center
- City of Atlanta City Hall
- Georgia State Capitol
- Capital Gateway
- Oakland Cemetery

MARTA Stations

- Ashley
- Vine City
- Georgia Dome

Neighborhoods

- Hunter Hills
- Moeley Park
- Washington Park
- Just Us
- Ashview Heights
- Vine City
- Atlanta University Center
- Castileberry Hills
- Downtown
- Capital Gateway
- Grant Park

NPU

- K
- L
- T
- M
- V
- W

Council Districts

- 1
- 2
- 3
- 4
- 5

Relevant Plans

- Atlanta Beltline Subarea 10 Master Plan
- Atlanta Beltline Subarea 4 Master Plan
- Vine City/Washington Park LCI
- Georgia World Congress Center Master Plan
- Imagine Downtown: UNICORE LCI
- Memorial Drive LCI
Corridor D Projects

The projects listed in the table below are the projects currently programmed for construction along the corridor as well as new projects proposed as part of the Cycle Atlanta Phase 1.0 Study. Facility type, the street that the project applies to, a description of the start and end points for the projects, and a summary cost estimate are provided. Additional project cost information is provided in the Appendix for each project.

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street To</th>
<th>Street From</th>
<th>Cross Section(s)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Bike Lane</td>
<td>Martin Luther King Jr Drive</td>
<td>James P Brawley Drive</td>
<td>Magnum Street</td>
<td>n/a</td>
</tr>
<tr>
<td>2031</td>
<td>Hard Surface Multi-Use Path</td>
<td>Lane Street</td>
<td>Boulevard Street</td>
<td>Magnum Street</td>
<td>n/a</td>
</tr>
<tr>
<td>2032</td>
<td>Bike Boulevard</td>
<td>Fraser Street-Woodward Avenue</td>
<td>Memorial Drive</td>
<td>Chastain Street</td>
<td>n/a</td>
</tr>
<tr>
<td>1959</td>
<td>Bike Lane</td>
<td>Mitchell Street</td>
<td>Spring Street</td>
<td>Washington Street D4</td>
<td>$17,270</td>
</tr>
<tr>
<td>2001</td>
<td>Multi-Use Path</td>
<td>Andrew Young International Boulevard</td>
<td>Georgia Dome Drive</td>
<td>Marietta Street</td>
<td>n/a Sea design schematics for details</td>
</tr>
<tr>
<td>5063</td>
<td>Multi-Use Path</td>
<td>Capital Avenue-Memorial Drive</td>
<td>Washington Street</td>
<td>Fraser Street</td>
<td>n/a Sea design schematics for details</td>
</tr>
<tr>
<td>5063</td>
<td>Bike Boulevard</td>
<td>Fraser Street-Woodward Avenue</td>
<td>Memorial Drive</td>
<td>Bill Kennedy Way D5, D6</td>
<td>$141,042</td>
</tr>
</tbody>
</table>

Notes
1. 1000 series: Facilities to be built in 2013
2. 2000 series: Facilities to be built in 2014
3. 3000 series: Facilities to be built in 2015
4. 4000 series: Unfunded high-priority projects we hope to fund by 2016
5. 5000 series: Facilities developed as part of the Cycle Atlanta Phase 1.0 Study. 5000-5019 is for Corridor A projects, 5020-5039 is for Corridor B projects, 5040-5049 is for Corridor C projects, 5060-5079 is for Corridor D projects, and 5080-5099 is for Corridor E projects.
6. Cost estimates include an estimate of probable cost for construction, design cost (25% of construction cost), and contingency cost (20% of construction costs). Construction costs can include re-stripping costs, signal improvements, new pavement markings, and multi-use path construction. Construction costs do not include resurfacing costs. Cost estimates for 1000 to 4000 series projects are not provided because they have already been funded, are in the process of being designed, or are in the process of being constructed.
Corridor D Design Schematics

The cross sections, plan concepts, and accompanying notes provide a description for the design of the proposed facilities along the corridor. A typical cross section has been developed for every segment of the corridor where a facility is proposed as part of the Cycle Atlanta: Phase 1.0 Study and where projects have been programmed but the facility design has not been finalized. Cross sections were not developed for corridor segments that already have a facility, where the facility has already been programmed for construction, or where the facility has already been designed through another project or planning effort.

The typical cross sections and plan concepts form the basis for the cost estimates presented on the previous page. Each project consists of one or more cross section or plan concept segments. The design schematics were used to provide details about facility design for projects, particularly where cross sections change along the corridor or intersection design is more complex.

The legend below provides a summary of the different symbols and line types used to describe existing conditions or proposed features along the corridor.

Design Schematics Legend

EXISTING BIKE FACILITIES
- Shared Lane Marking
- Bike Lane
- Multi-Use Path

PROPOSED BIKE FACILITIES
- Shared Lane Marking
- Bike Lane
- Multi-Use Path
- Bike Boulevard
- Buffered Bike Lane
- Protected Cycle Track
- Alternative Facility Options

STUDY FOCUS FEATURES
- Core Study Corridor
- Alternative Study Corridor
- Atlanta BeltLine Corridor
- MARTA Rail Station

ANNOTATION SYMBOLS
- Cross Section Application Location
- Corridor Connection to Atlanta BeltLine
- Map Annotation
- Annual Average Daily Traffic
- Cross Section Segment To/From Point
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>PAVED SHOULDER</td>
<td>Martin Luther King Jr Drive</td>
<td>Chappell Road</td>
<td>Off St</td>
<td>4</td>
<td>3</td>
<td>2 travel lanes, center turn lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No bike lane facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-foot sidewalk should create a paved shoulder. Long term, the paved shoulder will be re-purposed as sidewalk in order to widen the sidewalk.</td>
</tr>
</tbody>
</table>

Additional Notes

1. From Chappell Road to Walnut Street, the Westside Trail will serve as the primary bike lane facility along this corridor. From Walnut Street, cyclists will be able to continue along the proposed Westside Trail to Centennial Olympic Park or use Walnut Street to connect to the proposed bike lane along Mitchell Street.
2019 Bike Lane Martin Luther King Jr Drive-Mitchell Street James P Brawley Drive Magnolia Street This project is funded and is in the process of being designed and constructed. Because it is already being implemented, a cross-section was not developed for this project.

2031 Hard Surface Multi-Use Path Lenox Street Booker Street Magnolia Street This project is funded and is in the process of being designed and constructed. Because it is already being implemented, a cross-section was not developed for this project.

5062 Multi Use Path Andrew Young International Boulevard Georgia Dome Drive Marietta Street The connection from the Westside Trail to Centennial Olympic Park has been proposed in previous plans. However to complete this connection, several design considerations will need to be resolved including overcoming the significant grade change from Magnolia Street to Marietta Street. Because of this consideration and the potential relocation of the Georgia Dome, the scope and design for this project was not developed as part of this project. As the Georgia Dome site is redeveloped, the City of Atlanta should work the Georgia World Congress Center, the MART Foundation, and others to complete this connection.
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td></td>
<td>Mitchell St</td>
<td>Spring St</td>
<td>Washington St</td>
<td>3</td>
<td>2</td>
<td>To implement this cross section, Mitchell Street must be converted from a one-way street to a two-way street. The Mitchell Street conversion should also be paired with a one-way to two-way conversion of MLK Jr. Drive. Additionally, these conversions should be coordinated with the vehicle access closure of Capitol Square.</td>
</tr>
</tbody>
</table>
With the conversion of Capitol Square between Washington Street and Capitol Avenue to a bicycle and pedestrian only street, there is the potential to create a multi-use path connection between the Washington Street and Mitchell Street bikeway facilities and the proposed Woodward Avenue Boulevard. There are several alignment options including re-purposing the existing sidewalk along Capitol Avenue and Memorial Drive as a multi-use path. There is also an opportunity to run a multi-use path through the parking lot over the Interstate between Mitchell Street and Ponce Street. Because of these options, this alignment requires additional consideration that is beyond the scope of this project. The City of Atlanta should work with the Georgia Department of Transportation and others to develop a feasible alignment for this connection.

Additional Notes:

1. Work with the Department of Parks, Recreation and Cultural Affairs to remove fencing, install wayfinding, and improve multi-use path conditions between Connally Street and Lullaby Street. This segment is currently fenced off but is owned by the City of Atlanta.
Woodward Ave and Hill St Intersection Concept

Overview

Concept Summary
The intent with this intersection design is to help bicyclists using the Woodward Avenue bicycle boulevard cross Hill Street more safely. Hill Street is a major street crossing along this route with higher traffic volumes and a dedicated traffic signal. Signal improvements and pavement markings will help cyclists continue safely across this intersection.

Blue box allows bicyclists to queue ahead of stoppage traffic and continue straight.

Signs and pavement markings prohibit through vehicle traffic.

The signals should be upgraded so that bicyclists can actuate the signal and wait times are reduced. Currently, wait times are long and bicyclists cannot actuate the signal. These improvements will decrease wait time at the intersection for bicyclists and improve the convenience of using the route for bicyclists.

This image is not to scale and is presented for illustrative purpose only.
Concept Summary
The goal with this concept is to improve safety for bicyclists and pedestrians crossing Boulevard. The intersection is currently unsignalized, traffic volumes are high, and vehicular speeds are high along Boulevard, making it difficult for bicyclists and pedestrians to cross safely. To upgrade the intersection with safety measures, several design features are proposed including a new signal, a protected through bicycle lane, and pavement markings and signage that limit through vehicular traffic.

- On-street parking should be shifted away from the intersection to allow vehicles to safely turn onto Woodward Avenue.
- New traffic signal or hybrid beacon to be installed to facilitate bicyclist and pedestrian crossings.
- Protected through bicycle lane provides a comfortable waiting area for through bicyclists. Minimum width for facility should be 16’.
- Woodward Avenue travel lanes at the intersection should be 11’. Cross section should be 11’ travel lane, 10’ protected bicycle lane, and 11’ travel lane. Total width of Woodward Avenue at the intersection is 32’.
- Right turn only lane forces cars to turn onto Boulevard.
- A protected through bicycle lane provides a waiting space for bicyclists at this intersection while also managing through vehicular traffic volumes along this route by forcing vehicles to make a right turn only.

This image is not to scale and is presented for illustrative purposes only.
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5</td>
<td>Woodward Avenue</td>
<td>Kally Street</td>
<td>Chastain Street</td>
<td>2</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
</tbody>
</table>

Additional Notes

1. Currently, Woodward Avenue ends at Chastain Street. However, a new street is proposed to extend all the way to Bill Kennedy Way as part of the Atlanta Beltline Redevelopment Plan and the Atlanta Beltline Subarea 4 Master Plan. If the industrial properties redevelop, the bike boulevard should be extended along the new streets to Bill Kennedy Way and the Atlanta Beltline. See Atlanta Beltline Subarea 4 Master Plan for more details.

See inset map on page 91.

- 11,700 AADT
- (Google Earth, 2005)
Corridor E. Underwood Hills – Downtown – Candler Park
Howell Mill Rd – Marietta St – Edgewood Ave – Euclid Ave
Overview

Corridor E is the second longest Cycle Atlanta corridor and the only corridor to run both north to south and east to west. The corridor connects to three other Cycle Atlanta corridors including Corridor A, Corridor B and Corridor C. The corridor connects the industrial areas and redeveloping areas along Howell Mill Road and Marietta Street to Georgia Tech and Downtown. From the east, the corridor connects the Little Five Points area and Inman Park to Sweet Auburn district, Georgia State University, the Atlanta Street Car and Downtown.

Network Design

Bike facilities are proposed to start at Howell Mill Road and Chattahoochee Avenue, rather than the start of the study corridor at Howell Mill Road and Interstate 75. This decision was made because Howell Mill would require a significant redesign to accommodate bike facilities. With multiple intersections, curb cuts, the interstate interchange, and high vehicular volumes, the stretch of Howell Mill Road from Chattahoochee Avenue to Collier Road is not ideal in its current configuration for cycling. Even though it is a low priority bike connection currently, it could be an important bike connection from Buckhead neighborhoods across the interstate. Future planning for this portion of the corridor should consider accommodating cyclists with dedicated bike facilities.

From the intersection of Howell Mill Road and Chattahoochee Avenue south to Marietta Street, the bike lanes along Howell Mill Road will be the only route option with dedicated bike facilities. At 8th Street and Hampton Street, people will have the option of continuing along Marietta using bike lanes, connect to Corridor B routes to Georgia Tech, or to the multi-use greenway along Tech Parkway.

From the intersection of Northside Drive and Marietta Street and Tech Parkway to Centennial Olympic Park, people will have parallel route options. Along Marietta Street, people will be able to continue south using bike lanes. Along Tech Parkway and Luckie Street, people will be able to use a protected facility.

Once to Centennial Olympic Park, people will be able to use a protected cycle track to navigate around the park to connect to the Westside Trail, the Centennial Olympic Park Drive cycle track, the John Portman Boulevard cycle track, the Walton Street contra-flow bike lane or continue into downtown along Marietta Street, which has shared lane markings along this section of the corridor.

When people get to Peachtree Street along Marietta Street or Walton Street, they will be able to connect to Georgia State University, the Five Points MARTA station or continue east along the Street Car route. To navigate along the Street Car route, people will be able to use an eastbound bike route along Auburn Avenue or a westbound bike route along Edgewood Avenue. Along this route, people will also be able to connect to the two-way cycle track along Peachtree Center Avenue and Gilmer Street.

East of the streetcar route, people will be able to use bike lanes along Edgewood Avenue to connect to the BeltLine, Inman Park and the Inman Park MARTA station. They will also be able to use Euclid Avenue to connect to Little Five Points, Freedom Parkway and Chandler Park.

Facility Design

The majority of the corridor is designed with bike lanes. Along Howell Mill Road and Marietta Street, the street right-of-way and vehicular volumes allow for lane reductions to accommodate the addition of bike lanes. The contra-flow bike lane along Walton Street can provide a "low stress" alternative to Marietta Street. Bike lanes along both sides of the street are also used along Edgewood Avenue to connect to Edgewood/Auburn Avenue area to Inman Park.

For the route along the Street Car route, the facilities are designed to minimize the safety issues associated with biking and streetcar tracks. Street car tracks are notoriously difficult to cross by bike. They have been known to cause bike crashes when bike wheels skip on the tracks or get stuck in the tracks. To minimize the conflict between the tracks and people biking, bike facilities are installed on the opposite side of the street to the streetcar route. This design strategy means that bike facilities going eastbound will only be available along Auburn Avenue and westbound along Edgewood Avenue. The protected facilities along this corridor include Tech Parkway, Luckie Street and the route around Centennial Olympic Park.

Several intersection designs are also developed for this corridor. They include Luckie Street from North Avenue and Tech Parkway to Luckie Street and Pine Street, Luckie Street and Ivan Allen Jr. Boulevard, the routes around Centennial Olympic Park, the intersection of Euclid Avenue and Edgewood and the intersection of Euclid Avenue and Moreland Avenue. All of these intersection designs were developed to illustrate how higher order bike facilities can be designed with the existing street right-of-way or how intersection re-designs can improve the safety for people driving and biking.
Corridor E: Core and Alternative Routes

Corridor Length
4.7 miles
45 minutes by bike

Major Destinations
- Atlanta Beltline
- Westside Provisions District
- Marietta Commercial Corridor
- Georgia Institute of Technology
- Coca-Cola Company Headquarters
- Centennial Olympic Park and surrounding entertainment venues
- Woodruff Park
- Georgia State University
- Sweet Auburn Historic District
- Martin Luther King Jr. National Historic Site
- Eastside Trail
- Freedom Parkway
- Little Five Points

MARTA Stations
- Five Points
- Inman Park

Neighborhoods
- Underwood Hills
- Berkeley Park
- Blanchard
- Inman Park
- Marietta Street Artery
- Georgia Tech
- Downtown
- Sweet Auburn
- Old Fourth Ward
- Inman Park
- Chandler Park

NPU
- D
- E
- M
- N

Council Districts
- 2
- 3
- 8

Relevant Plans
- Atlanta Beltline Subarea B Master Plan
- Atlanta Beltline Subarea 9 Master Plan
- Howell Mill (LCI)
- Upper Westside (LCI)
- Georgia Institute of Technology Campus Master Plan
- Georgia World Congress Center Master Plan
- Imagine Downtown: ENCORE (LCI)
- Moreland (LCI)
Corridor E Projects

The projects listed in the table below are the projects currently programmed for construction along the corridor as well as new projects proposed as part of the Cycle Atlanta: Phase 1.0 Study. Facility type, the street that the project applies to, a description of the start and end points for the projects and a summary cost estimate are provided. Additional project cost information is provided in the Appendix for each project.

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Cross Section(s)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1003</td>
<td>Bike Lane</td>
<td>Edgewood Avenue</td>
<td>Boulevard</td>
<td>Hurt Street</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2007</td>
<td>Bike Lane</td>
<td>Edgewood Avenue - Auburn Avenue</td>
<td>Peachtree Street</td>
<td>Jackson Street</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5080</td>
<td>Bike Lane/Shared Lane Marking</td>
<td>Howell Mill Road</td>
<td>Chattoochi Avenue</td>
<td>West Marietta Street</td>
<td>E1, E2, E3, E4, E5</td>
<td>$238,019</td>
</tr>
<tr>
<td>5081</td>
<td>Bike Lane</td>
<td>Marietta Street</td>
<td>Howell Mill Road</td>
<td>Baker Street</td>
<td>E6, E7, E8, E11, E12, E14, E15</td>
<td>$274,960</td>
</tr>
<tr>
<td>5082</td>
<td>Shared Lane Marking</td>
<td>Hampton Street and 3rd Street</td>
<td>Marietta Street</td>
<td>8th Street</td>
<td>E21, E22</td>
<td>$4,129</td>
</tr>
<tr>
<td>5083</td>
<td>Multi-Use Path</td>
<td>Tech Parkway</td>
<td>Northside Drive</td>
<td>North Avenue</td>
<td>E10</td>
<td>$174,731</td>
</tr>
<tr>
<td>5084</td>
<td>Cycle Track</td>
<td>Luckie Street</td>
<td>North Avenue</td>
<td>Baker Street</td>
<td>E13, E16</td>
<td>$448,080</td>
</tr>
<tr>
<td>5085</td>
<td>Cycle Track</td>
<td>Baker Street and Centennial Olympic Park Drive</td>
<td>Baker Street from Luckie Street to Centennial Olympic Park Drive</td>
<td>Centennial Olympic Park Drive</td>
<td>Centennial Olympic Park concept</td>
<td>$460,937</td>
</tr>
<tr>
<td>5086</td>
<td>Shared Lane Marking</td>
<td>Park Avenue Place</td>
<td>Marietta Street</td>
<td>Centennial Olympic Park Drive</td>
<td>Centennial Olympic Park concept</td>
<td>$3,420</td>
</tr>
<tr>
<td>5087</td>
<td>Continuation Lane</td>
<td>Walton Street</td>
<td>Centennial Olympic Park Drive</td>
<td>Peachtree Street</td>
<td>E17</td>
<td>$108,764</td>
</tr>
<tr>
<td>5088</td>
<td>Shared Lane Marking and Bike Lanes</td>
<td>Euclid Avenue</td>
<td>Edgewood Avenue</td>
<td>Moreland Avenue</td>
<td>E18, E19, E20</td>
<td>$33,155</td>
</tr>
<tr>
<td>5089</td>
<td>Bike Lanes</td>
<td>Brady Avenue</td>
<td>Howell Mill Road</td>
<td>West Marietta Street</td>
<td>E23, E24</td>
<td>$34,409</td>
</tr>
</tbody>
</table>

Notes:
1. 1000 series: Facilities to be built in 2013
2. 2000 series: Facilities to be built in 2014
3. 3000 series: Facilities to be built in 2015
4. 4000 series: Unfunded high-priority projects we hope to fund by 2016
5. 5000 series: Facilities developed as part of the Cycle Atlanta: Phase 1.0 Study 5000 - 5019 is for Corridor A projects, 5020 - 5039 is for Corridor B projects, 5040-5059 is for Corridor C projects, 5060 - 5079 is for Corridor D projects and 5080 - 5099 is for Corridor E projects
6. Cost estimates include an estimate of probable cost for construction, design cost (5% of construction cost) and contingency cost (10% of construction cost). Construction costs can include re-striping costs, signal improvements, new pavement markings and multi-use path construction. Construction costs do not include paving costs. Cost estimates for 1000 to 4000 series projects are not provided because they have already been funded, are in the process of being designed, or are in the process of being constructed.
Corridor E Design Schematics

The cross sections, plan concepts and accompanying notes provide a description for the design of the proposed facilities along the corridor. A typical cross section has been developed for every segment of the corridor where a facility is proposed as part of the Cycle Atlanta: Phase 1.0 Study and where projects have been programmed but the facility design has not been finalized. Cross sections were not developed for corridor segments that already have a facility, where the facility has already been programmed for construction or where the facility has already been designed through another project or planning effort.

The typical cross sections and plan concepts form the basis for the cost estimates presented on the previous page. Each project consists of one or more cross section or plan concept segments. The design schematics were used to provide details about facility design for projects, particularly where cross sections change along the corridor or intersection design is more complex.

The legend below provides a summary of the different symbols and line types used to describe existing conditions or proposed features along the corridor.

Design Schematics Legend

EXISTING BIKE FACILITIES
- Shared Lane Marking
- Bike Lane
- Multi-Use Path

PROPOSED BIKE FACILITIES
- Shared Lane Marking
- Bike Lane
- Multi-Use Path
- Bike Boulevard
- Buffered Bike Lane
- Alternative Facility Options
- Protected Cycle Track
- Raised Cycle Track

STUDY FOCUS FEATURES
- Core Study Corridor
- Alternative Study Corridor
- Atlanta BeltLine Corridor
- MARTA Rail Station

ANNOTATION SYMBOLS
- Cross Section Application Location
- Corridor Connection to Atlanta BeltLine
- Map Annotation
- Annual Average Daily Traffic
- Cross Section Segment To/From Point
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street From</th>
<th>Street To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>BIKE LANES</td>
<td>Howell Mill Road</td>
<td>Morris Street</td>
<td>3</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chattahoochee Avenue</td>
<td></td>
<td>10.17</td>
<td>10.17</td>
<td>6.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.25</td>
<td>CORNER WIDTH</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>BIKE LANES</td>
<td>Howell Mill Road</td>
<td>Trabert Avenue</td>
<td>4</td>
<td>3</td>
<td>2 travel lanes; center turn lane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Morris Street</td>
<td></td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Additional Notes

1. Corridor E extends all the way to the intersection of Howell Mill Road and Interstates 75. However, cross sections and projects for Cycle Atlanta begin at Chattahoochee Avenue and extend south. Cross sections were not developed for the segment of Howell Mill Road from Interstate 75 to Chattahoochee Avenue because of the significant design challenges along this segment to accommodate bikeway facilities. The corridor would require significant and costly changes to travel lanes and the streetscape to address the frequent curb cuts, complicated intersections, and the Interstate interchange. Through the planning process, Chattahoochee Avenue was determined to be the new end point for northern end of Corridor E.
A supplement to the Connect Atlanta Plan

Cross Section ID

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3</td>
<td>Howell Mill Road</td>
<td>Tract Avenue</td>
<td>Huff Road</td>
<td>3</td>
<td>3</td>
<td>2 travel lanes; center turn lane</td>
</tr>
</tbody>
</table>

To accommodate bike lanes, the roadway will need to be widened. The City of Atlanta owns property on either side of the roadway. The utilities and fencing along the southern edge of the roadway will likely need to be moved in order to accommodate the widening. Additional project scope development and study is needed.

| E4 | Howell Mill Road | Huff Road | 14th Street | 4 | 3 | 2 travel lanes; center turn lane |

Additional Notes

- The Atlanta BeltLine is prominently featured in the map, indicating its proximity to the proposed changes.
- The map includes a scale bar and directional indicators for clarity.
- The table provides specific details about each cross section, including street names, lane configurations, and notes for planning considerations.
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street From</th>
<th>Street To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5</td>
<td>Howell Mill Road</td>
<td>14th Street West</td>
<td>3</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td>E23</td>
<td>Brady Avenue</td>
<td>Howell Mill Road</td>
<td>3</td>
<td>2</td>
<td>2 travel lanes, on-street parking along one side of roadway</td>
</tr>
<tr>
<td>E24</td>
<td>Brady Avenue</td>
<td>10th Street West</td>
<td>2</td>
<td>3</td>
<td>2 travel lanes</td>
</tr>
</tbody>
</table>

Diagram showing the network of streets and pathways with labels for each section.
A Supplement to the Connect Atlanta Plan

Additional Notes

1. Long-term, the vision for the James E. Brawley and Jefferson Street bike boulevards to Marietta Street. When completed, the Brawley bike boulevard will access all the way south to the Atlanta University Center and the Jefferson bike boulevard will connect to the future Westside Reservoir Park. This bike boulevard connection is show here for illustration purposes only. To connect both of these routes to Marietta will require crossing over the active rail lines. The design challenges to cross at this location may be cost prohibitive. As this vision for this connection is developed alternative alignments should be considered including using Northside Drive or Marietta Boulevard to cross the rail lines.
This page has been intentionally left blank.
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street From</th>
<th>To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7</td>
<td>BIKE LANES</td>
<td>Marietta St Drive</td>
<td>Means St</td>
<td>4</td>
<td>2</td>
<td>2 travel lanes; on-street parking</td>
</tr>
<tr>
<td>E8</td>
<td>BIKE LANES</td>
<td>Marietta St</td>
<td>Means St</td>
<td>4</td>
<td>3</td>
<td>2 travel lanes, center turn lane</td>
</tr>
<tr>
<td>E10</td>
<td>SHARED CYCLE AND PEDESTRIAN SPACE</td>
<td>Tech Parkwy Drive</td>
<td>North Avenue</td>
<td>4</td>
<td>3</td>
<td>2 travel lanes</td>
</tr>
<tr>
<td>E11</td>
<td>BIKE LANES</td>
<td>Marietta St</td>
<td>North Ave</td>
<td>4</td>
<td>2</td>
<td>2 travel lanes</td>
</tr>
</tbody>
</table>

Convert western side of Tech Parkway to bicycle and pedestrian only. Convert eastern side of Tech Parkway to a two-way street (one northbound lane and one southbound lane). In order to accommodate this conversion, on-street parking must be removed along Tech Parkwy.
<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E13</td>
<td>Marietta Street</td>
<td>North Avenue Bridge</td>
<td>Ivan Allen Jr Boulevard</td>
<td>4</td>
<td>3</td>
<td>3 travel lanes. Drop on street parking at entrance to Coca-Cola campus and provide a center left turn lane for southbound traffic. (Google Earth, 2007)</td>
</tr>
</tbody>
</table>
See Intersection concepts on page 106.

Cross Section

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Cross Section</th>
<th>Street From</th>
<th>Street To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E14</td>
<td></td>
<td>Marietta Street</td>
<td>Ivan Allen Jr Boulevard</td>
<td>Simpson Street</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>E15</td>
<td></td>
<td>Marietta Street</td>
<td>Simpson Street</td>
<td>Ballar Street</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>E16</td>
<td></td>
<td>Luckia Street</td>
<td>Pina Street</td>
<td>Ballar Street</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

This cross section, as presented, is a short-term option for this segment. Implementation can be done with re-stripping, pavement marking, and HRT posts and signage. Long term, this cross section should be adjusted to accommodate the proposed streetcar extension along Luckia Street.

To accommodate the streetcar, the width of the travel lanes should be increased to a minimum of 11' and the parking lane to 9'. To accommodate this change, the cycle track width can be narrowed to 8' and the buffer between the cycle track and adjacent travel lane (shared with the streetcar) can be narrowed as well. If the buffer is narrowed, it should be designed as a more permanent barrier using a raised curb or other feature that limits when cyclists can enter or exit the cycle track.

Using this approach will help direct cyclists to specific entrance and exit points that can allow safe crossing over the streetcar tracks.
Luckie St at North Ave/Tech Parkway and Pine St Intersection Concepts

Overview

Concept Summary

There are three main goals with this concept. One, provide a high-quality bike facility connecting Georgia Tech and the Coca-Cola campuses to Centennial Olympic Park and PATH mid-use trails. Two, preserve vehicular capacity and access to Coca-Cola campus. Three, develop a design that can accommodate the proposed extension of the Atlanta Streetcar along Luckie Street.

To accomplish these goals, a two-way cycle track is proposed along the western edge of the street. From Tech Parkway to Pine Street along Luckie, the cycle track should utilize the existing sidewalk and streetscape between the curb and the property line. Utilizing the existing sidewalk helps preserve a travel lane and vehicular capacity along this segment of Luckie Street. At Pine Street, the cycle track transitions to an on-street facility.

Additionally, the intersection at North Avenue and Luckie Street/Tech Parkway is reconfigured to accommodate the proposed changes. These changes include the conversion of one side of Tech Parkway to a bicycle and pedestrian only greenway and the other side of Tech Parkway to a two-way street (one northbound lane and one southbound lane).
Luckie St at North Ave/Tech Parkway and Pine St Intersection Concepts
Part 1: Luckie St at Pine St and Merrits Ave

- Intersection crossing markings lead bicyclists between a street level and a raised cycle track.
- Luckie Street is re-configured south of Pine Street from four lanes to three lanes to accommodate the two-way cycle track.
- Green conflict areas increase awareness of bicyclists at driveway entrances to Coca-Cola.
- The existing right turn only lane is removed and the curb is extended to create space for the cycle track and the sidewalk. Additionally, the outside southbound lane is converted to a right turn only lane to accommodate vehicular access to Coca-Cola entrance.
- Separate signal phases for cyclists and drivers can help improve safety by reducing conflicts during intersection crossings.
- On-street parking is maintained.
- Modify retaining wall to provide cycle track.

A supplement to the Connect Atlanta Plan

This image is not to scale and is presented for illustrative purposes only.
Luckie St at North Ave/Tech Parkway and Pine St Intersection Concepts

Part 3: Luckie St at North Ave/Tech Parkway

- The slip lane is removed because it is no longer needed for vehicle turning movements. It also creates additional sidewalk space for pedestrians at the intersection.
- West side of Tech Parkway is converted to a bicycle and pedestrian-only street.
- The existing curb and median is shifted to accommodate a southbound through lane and left turn only lane.
- Northbound lanes are re-striped to better indicate permitted turning movements in each travel lane.
- Using the existing sidewalk and streetscape space for the cycle track allows Luckie Street to maintain the existing travel lane configuration where Coca-Cola employees access the campus.

This image is not to scale and is presented for illustrative purposes only.
See intersection concepts on page 110.
Centennial Olympic Park Intersection Concepts

Overview

Concept Summary

With the development of the bikeway network for this study, Centennial Olympic Park is emerging as an important connection point. Several routes intersect around Centennial Olympic Park including the following:

- Bike lanes along Marietta Street
- Proposed two-way cycle track along Luckie Street
- PATH multi-use path along John Portman Boulevard that will connect the Freedom Parkway Trail to Centennial Olympic Park
- Proposed contra-flow bike lane along Walton Street from Centennial Olympic Park Drive to Peachtree Street.
- Proposed two-way cycle track along Centennial Olympic Park Drive from Castleberry Hill to Ivan Allen Jr. Boulevard.

In addition to these bicycle connections, the area continues to grow as a tourist hub with access to transit via the Atlanta Streetcar and surrounding MARTA stations. Likewise, the City of Atlanta plans to implement a bike share system that will likely include stations at or around Centennial Olympic Park Drive.

With all of these changes and potential connections, Centennial Olympic Park is becoming a truly urban park. The proposed reconfiguration of Baker Street and Centennial Olympic Park Drive includes the addition of a two-way cycle track along the edge of the park sidewalk and on-street parking between the cycle track and travel lanes. To accommodate the addition of the cycle track and on-street parking, two travel lanes are removed.

With the addition of on-street parking around the majority of the park’s edge, vehicular access to the park is improved. Additionally, the addition of the on-street parking can be a source of revenue for the Centennial Olympic Park, which can be used to cover maintenance and operational costs associated with the park.

The on-street parking lanes could also be designated to change between on-street parking lanes and travel lanes. Using Intelligent Transportation System (ITS) management, the on-street parking lanes can be temporarily changed to travel lanes to increase motor vehicle capacity of streets during major events. When an event is finished, the travel lanes can be changed back to on-street parking lanes.

Lastly, this concept is developed with the intent of keeping the bicycle circulation around the edge of the park. Riding a bicycle through the park is currently not allowed and this concept will help preserve the interior of the park as a pedestrian place.

The Centennial Olympic Park concept is presented in more detail on the subsequent pages of this chapter.
Centennial Olympic Park Intersection Concepts
Part 1: COP North

- Remove temporary closure of this section of Baker Street.
- Intersection crossing markings clarify conflict areas and the intended path of travel for bicyclists.
- Two-way cycle tracks along the perimeter of Centennial Olympic Park provide a low-stress way to enjoy the setting and access popular tourist destination.
- Baker Street reconfigured to provide a single travel lane in each direction, on-street parking and a two-way cycle track.
- On-street parking and a two-way cycle track are added along Centennial Olympic Park Drive.
- Bicyclists can transition between the John Portman multi-use path and Centennial Olympic Park Drive two-way cycle track.

This image is not to scale and is presented for illustrative purposes only.
The proposed multi-use path alignment from the Westside Trail to Centennial Olympic Park could use Andrew Young International Boulevard to connect to the park.

Existing shared lane markings on Marietta Street.

Bicycle signal and two-stage turn box provides cycle track access to Walton Street.

At southbound approach to Marietta Street, a right turn only lane could be used instead of on-street parking.

Two-way cycle track continues south to the Castleberry Hill neighborhood.

Contra-flow bike lane on Walton Street connects Centennial Olympic Park Drive and Peachtree Street. Also provides a bicyclist an alternative route option to Marietta Street, which has higher traffic volumes and no dedicated bike facility.
This page has been intentionally left blank.
A two-way cycle track will be constructed along Peachtree Center Avenue in 2013. The cycle track will provide a protected bikeway and alternative route option to Peachtree Street from Ivan Allen Boulevard to Edgewood Avenue.

1. Bike facilities will be installed to accommodate cyclists traveling east. Bike facilities are not installed in the westbound direction to accommodate the Atlanta Streetcar. Additionally, streetcar tracks can often be difficult for cyclists to cross or navigate. For cyclists traveling west, they are encouraged to use the westbound bike facilities along Edgewood Avenue.

2. Bike facilities will be installed to accommodate cyclists traveling west. Bike facilities are not installed in the eastbound direction to accommodate the Atlanta Streetcar. Additionally, streetcar tracks can often be difficult for cyclists to cross or navigate. For cyclists traveling east, they are encouraged to use the eastbound bike facilities along Edgewood Avenue.

3. East of Jackson Street, the existing bike lanes will be re-painted in 2013.

Along the Atlanta Streetcar route, bike facilities will be on one side of the road and run the opposite direction of the streetcar.
Notes

1. The Edgewood Avenue bridge is being rebuilt in 2013 and will be re-opened in 2014. The new bridge will include connections from Edgewood Avenue to the Atlanta BeltLine Eastside Trail.

2. The bike lanes along Edgewood Avenue will be re-striped in 2013.

3. Krog Street and the Krog Street tunnel will have bike FRP improvements in 2013. These improvements will enhance the bicycle connection between the Atlanta BeltLine Eastside Trail and Atlanta BeltLine south of the rail lines. Krog Street will have shared lane markings installed and the Krog Street tunnel will be resurfaced. It will have lighting upgrades and shared lane markings installed.

See intersection concepts on page 117.
Concept Summary

The intent with this concept is to improve the transition from Edgewood Avenue to Euclid Avenue for bicyclists and to reduce bicycle-vehicle conflict points. Changes to the intersection include the removal of the traffic island along Edgewood Avenue and the extension of the bike lanes along Edgewood Avenue all the way through the intersection.

Edgewood Avenue is reconfigured to remove a dedicated turn lane and preserve continuous bike lane and on-street parking on the south side of the street.

Traffic island is removed to create space for eastbound bike lane along Edgewood Avenue.

Shared lane markings to be added along Euclid Avenue.

This image is not to scale and is presented for illustrative purposes only.
Cycle Atlanta: Phase 1.0 Study

<table>
<thead>
<tr>
<th>Cross Section ID</th>
<th>Street From</th>
<th>Street To</th>
<th>Existing Vehicular Lanes</th>
<th>Proposed Vehicular Lanes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E18</td>
<td>Euclid Avenue</td>
<td>Edgewood Avenue</td>
<td>Alta Avenue</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- **E19**
 - Street From: Euclid Avenue
 - Street To: Alta Avenue
 - Street: Austin Avenue
 - Existing Vehicular Lanes: 2
 - Proposed Vehicular Lanes: 2
 - Notes: 2 travel lanes

A dashed yellow centerline should be considered when this segment is implemented. Consideration should be given to existing and anticipated future motor vehicle volumes.
A dashed yellow centerline should be considered when this segment is implemented. Consideration should be given to existing and anticipated future motor vehicle volumes.
Concept Summary

The goal with this concept is to improve the ability of bicyclists to navigate this intersection as they travel along Euclid Avenue and McLendon Avenue and to reduce bicycle-vehicle conflict points.

Along Euclid, the street is reconfigured to have a downhill shared lane for bicyclists and vehicles and an uphill travel and bike lane. The uphill bike lane will provide cyclists traveling east dedicated space and help them queue appropriately at the intersection.

At the intersection, the travel lanes are repositioned to create space for the eastbound bike lane to extend all the way to the intersection. A bike box is provided for cyclists in order to give them priority when crossing Moreland Avenue. On the other side of the intersection, shared lane markings are applied in both directions of travel along McLendon Avenue to increase awareness of bicyclists at the intersection.

Overview

- Parking terminates here.
- Parking is removed on north side of Euclid Avenue to provide space for uphill bike lane and bike box at intersection.
- Bike box allows bicyclist to position to continue along McLendon Avenue.
- Lane striping adjusted to allow for an uphill bike lane and downhill shared lane markings on Euclid Avenue.
- Shared lane markings are installed in both directions of travel to increase the visibility and awareness of bicyclists at the intersection.
Corridor A Cost Estimates

The following tables contain additional cost estimate information for projects and cross sections for Corridor A: Brookwood-Midtown-Downtown-West End. The tables include the following information:

- **Project or Cross Section ID**
- **Facility Type**
- **Street**
- **Beginning Point (To)**
- **Ending Point (From)**
- **Segment Length (Distance)**
- **Construction Cost**
- **Design Cost**
- **Contingency Cost**
- **Total Cost**

Cost estimates include an estimate of probable cost for construction, design cost (25% of construction cost), and contingency cost (20% of construction costs). Construction costs can include re-stripping costs, signal improvements, new pavement markings, and multi-use path construction. Construction costs do not include resurfacing costs. Cost estimates for 1000 to 4000 series projects are not provided because they have already been funded, are in the process of being designed, or are in the process of being constructed.

The first two tables for Corridor A summarize the two proposed treatments for Peachtree Street from the Buford-Spring Connector (near the entrance to Savannah College of Art and Design) to Linden Avenue.

Option A: Shared Lane Option

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Distance (feet)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6a</td>
<td>Buffered Bike Lane</td>
<td>Peachtree Street</td>
<td>Buford-Spring Connector</td>
<td>Spring Street</td>
<td>500</td>
<td>$18,397</td>
<td>$4,599</td>
<td>$3,679</td>
<td>$26,675</td>
</tr>
<tr>
<td>A7a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>Spring Street</td>
<td>Peachtree Circle</td>
<td>700</td>
<td>$1,689</td>
<td>$422</td>
<td>$338</td>
<td>$2,459</td>
</tr>
<tr>
<td>A8a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>Peachtree Circle</td>
<td>West Peachtree Street</td>
<td>460</td>
<td>$1,696</td>
<td>$424</td>
<td>$339</td>
<td>$2,459</td>
</tr>
<tr>
<td>A13a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>West Peachtree Street</td>
<td>Alliance Theatre</td>
<td>2,050</td>
<td>$5,936</td>
<td>$1,484</td>
<td>$1,187</td>
<td>$8,607</td>
</tr>
<tr>
<td>A14a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>Alliance Theatre</td>
<td>14th Street</td>
<td>1,020</td>
<td>$5,936</td>
<td>$1,484</td>
<td>$1,187</td>
<td>$8,607</td>
</tr>
<tr>
<td>A16a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>14th Street</td>
<td>10th Street</td>
<td>1,880</td>
<td>$5,512</td>
<td>$1,378</td>
<td>$1,102</td>
<td>$7,992</td>
</tr>
<tr>
<td>A19a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>10th Street</td>
<td>North Avenue</td>
<td>3,800</td>
<td>$10,812</td>
<td>$2,703</td>
<td>$2,162</td>
<td>$15,677</td>
</tr>
<tr>
<td>A21a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>North Avenue</td>
<td>Linden Avenue</td>
<td>540</td>
<td>$1,908</td>
<td>$477</td>
<td>$382</td>
<td>$2,767</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,950</td>
<td>$51,886</td>
<td>$12,972</td>
<td>$10,377</td>
<td>$75,235</td>
</tr>
</tbody>
</table>

Option B: Bike Lane Option

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Distance (feet)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6b</td>
<td>Buffered Bike Lane</td>
<td>Peachtree Street</td>
<td>Buford Connector</td>
<td>Spring Street</td>
<td>500</td>
<td>$16,702</td>
<td>$4,175</td>
<td>$3,340</td>
<td>$24,217</td>
</tr>
<tr>
<td>A7b</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>Spring Street</td>
<td>Peachtree Circle</td>
<td>700</td>
<td>$19,147</td>
<td>$4,787</td>
<td>$3,829</td>
<td>$27,764</td>
</tr>
<tr>
<td>A8b</td>
<td>Buffered Bike Lane</td>
<td>Peachtree Street</td>
<td>Peachtree Circle</td>
<td>West Peachtree Street</td>
<td>460</td>
<td>$19,147</td>
<td>$4,787</td>
<td>$3,829</td>
<td>$27,764</td>
</tr>
<tr>
<td>A13b</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>West Peachtree Street</td>
<td>Alliance Theatre</td>
<td>2,050</td>
<td>$49,576</td>
<td>$12,394</td>
<td>$9,915</td>
<td>$71,885</td>
</tr>
<tr>
<td>A14b</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>Alliance Theatre</td>
<td>14th Street</td>
<td>1,020</td>
<td>$29,393</td>
<td>$7,348</td>
<td>$5,879</td>
<td>$42,602</td>
</tr>
<tr>
<td>A16b</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>14th Street</td>
<td>10th Street</td>
<td>1,880</td>
<td>$77,368</td>
<td>$19,342</td>
<td>$15,474</td>
<td>$112,184</td>
</tr>
<tr>
<td>A19b</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>10th Street</td>
<td>North Avenue</td>
<td>3,800</td>
<td>$91,897</td>
<td>$22,974</td>
<td>$18,379</td>
<td>$133,250</td>
</tr>
<tr>
<td>A21b</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>North Avenue</td>
<td>Linden Avenue</td>
<td>540</td>
<td>$71,860</td>
<td>$18,960</td>
<td>$13,772</td>
<td>$105,592</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,950</td>
<td>$311,309</td>
<td>$77,827</td>
<td>$62,262</td>
<td>$451,397</td>
</tr>
</tbody>
</table>
Corridor A Projects

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Distance (miles)</th>
<th>Cross Section(s)</th>
<th>Construction Cost (2014)</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1005</td>
<td>Bike Lane</td>
<td>Murphy Avenue</td>
<td>Ralph David Abernathy Boulevard</td>
<td>Sylvan Road</td>
<td>n/a</td>
<td>n/a</td>
<td>$158,511</td>
<td>$39,628</td>
<td>$31,702</td>
<td>$229,841</td>
</tr>
<tr>
<td>1014</td>
<td>Protected Cycle Track</td>
<td>West Peachtree Street</td>
<td>12th Street</td>
<td>North Avenue</td>
<td>n/a</td>
<td>n/a</td>
<td>$329,705</td>
<td>$82,426</td>
<td>$65,941</td>
<td>$478,072</td>
</tr>
<tr>
<td>1019</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>West Peachtree Street</td>
<td>North Avenue</td>
<td>n/a</td>
<td>n/a</td>
<td>$67,739</td>
<td>$16,935</td>
<td>$13,548</td>
<td>$98,221</td>
</tr>
<tr>
<td>1025</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>North Avenue</td>
<td>Ivan Allen Jr Boulevard</td>
<td>n/a</td>
<td>n/a</td>
<td>$210,333</td>
<td>$52,583</td>
<td>$42,067</td>
<td>$304,982</td>
</tr>
<tr>
<td>5000</td>
<td>Bike Lane</td>
<td>Peachtree Road</td>
<td>Colonial Homes Drive</td>
<td>Interstate 85</td>
<td>1.1</td>
<td>A-1, A-2, A-3, A-4</td>
<td>$182,661</td>
<td>$45,665</td>
<td>$36,532</td>
<td>$264,858</td>
</tr>
<tr>
<td>5004</td>
<td>Shared Lane Markings</td>
<td>Peachtree Street</td>
<td>Porter Place</td>
<td>John Portman Boulevard</td>
<td>0.2</td>
<td>A-28, A-48</td>
<td>$98,273</td>
<td>$24,368</td>
<td>$19,655</td>
<td>$142,496</td>
</tr>
<tr>
<td>5006</td>
<td>Cycle Track</td>
<td>Gilmer Street-Courtland</td>
<td>Peachtree Center Avenue</td>
<td>Memorial Drive</td>
<td>0.6</td>
<td>A-29, A-30</td>
<td>$182,661</td>
<td>$45,665</td>
<td>$36,532</td>
<td>$264,858</td>
</tr>
<tr>
<td>5007</td>
<td>Buffered Bike Lane</td>
<td>Memorial Drive</td>
<td>Peachtree Street</td>
<td>Fraser Avenue</td>
<td>0.5</td>
<td>A-32</td>
<td>$98,273</td>
<td>$24,368</td>
<td>$19,655</td>
<td>$142,496</td>
</tr>
<tr>
<td>5008</td>
<td>Multi-Use Path</td>
<td>Peter Street-Whitehall</td>
<td>Walker Street</td>
<td>Ralph David Abernathy Boulevard</td>
<td>0.8</td>
<td>A-3, A-35, A-37</td>
<td>$610,596</td>
<td>$152,649</td>
<td>$122,119</td>
<td>$885,364</td>
</tr>
<tr>
<td>5009</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>Mitchel Street</td>
<td>Memorial Drive</td>
<td>0.5</td>
<td>A-31</td>
<td>$182,661</td>
<td>$45,665</td>
<td>$36,532</td>
<td>$264,858</td>
</tr>
<tr>
<td>5011</td>
<td>Multi-Use Path</td>
<td>Lee Street</td>
<td>Sylvan Road</td>
<td>Ralph David Abernathy Boulevard</td>
<td>0.9</td>
<td>A-30, A-41</td>
<td>$683,150</td>
<td>$170,788</td>
<td>$136,630</td>
<td>$990,568</td>
</tr>
<tr>
<td>5012</td>
<td>Bike Lane/Shared Lane Marking</td>
<td>17th Street</td>
<td>West Peachtree Street</td>
<td>Peachtree Circle</td>
<td>0.2</td>
<td>A-9, A-10, A-11</td>
<td>$11,805</td>
<td>$2,951</td>
<td>$2,361</td>
<td>$17,117</td>
</tr>
<tr>
<td>5013</td>
<td>Cycle Track</td>
<td>Courtland Street</td>
<td>Ponce de Leon Avenue</td>
<td>Ralph McGill Boulevard</td>
<td>0.6</td>
<td>A-47</td>
<td>$64,545</td>
<td>$16,336</td>
<td>$12,909</td>
<td>$93,780</td>
</tr>
</tbody>
</table>

Notes
1. 1000 series: Facilities to be built in 2013
2. 2000 series: Facilities to be built in 2014
3. 3000 series: Facilities to be built in 2015
4. 4000 series: Unfunded high-priority projects we hope to fund by 2016
5. 5000 series: Facilities developed as part of the Cycle Atlanta: Phase 1.0 Study; 5000 - 5019 is for Corridor A projects, 5020 - 5039 is for Corridor B projects, 5040-5059 is for Corridor C projects, 5060 - 5079 is for Corridor D projects, and 5080 - 5099 is for Corridor E projects
Cycle Atlanta: Phase 1.0 Study

Corridor A Cross Sections

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street To From</th>
<th>Distance (feet)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Bike Lane</td>
<td>Peachtree Road Colonial Homes Drive Brighton Road</td>
<td>1,990</td>
<td>$54,433</td>
<td>$13,608</td>
<td>$10,887</td>
<td>$78,928</td>
</tr>
<tr>
<td>A2</td>
<td>Bike Lane</td>
<td>Peachtree Road Brighton Road Collier Road</td>
<td>640</td>
<td>$17,506</td>
<td>$4,377</td>
<td>$3,501</td>
<td>$25,384</td>
</tr>
<tr>
<td>A3</td>
<td>Bike Lane</td>
<td>Collier Road Peachtree Road Bridge</td>
<td>2,600</td>
<td>$71,119</td>
<td>$17,780</td>
<td>$14,224</td>
<td>$103,122</td>
</tr>
<tr>
<td>A4</td>
<td>Buffered Bike Lane</td>
<td>Peachtree Road Bridge Peachtree Road Bridge</td>
<td>420</td>
<td>$15,453</td>
<td>$3,863</td>
<td>$3,091</td>
<td>$22,407</td>
</tr>
<tr>
<td>A5</td>
<td>Buffered Bike Lane</td>
<td>Peachtree Street Peachtree Road Bridge Northbound ramp to Spring-Buford Connector</td>
<td>500</td>
<td>$18,397</td>
<td>$4,787</td>
<td>$3,829</td>
<td>$27,764</td>
</tr>
<tr>
<td>A6a</td>
<td>Buffered Bike Lane</td>
<td>Peachtree Street Spring Street</td>
<td>500</td>
<td>$18,397</td>
<td>$4,787</td>
<td>$3,829</td>
<td>$27,764</td>
</tr>
<tr>
<td>A6b</td>
<td>Buffered Bike Lane</td>
<td>Peachtree Street Spring Street</td>
<td>500</td>
<td>$16,702</td>
<td>$4,175</td>
<td>$3,340</td>
<td>$24,217</td>
</tr>
<tr>
<td>A7a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street Peachtree Circle</td>
<td>700</td>
<td>$1,689</td>
<td>$422</td>
<td>$338</td>
<td>$2,450</td>
</tr>
<tr>
<td>A7b</td>
<td>Bike Lane</td>
<td>Peachtree Street Peachtree Circle</td>
<td>700</td>
<td>$19,147</td>
<td>$4,787</td>
<td>$3,829</td>
<td>$27,764</td>
</tr>
<tr>
<td>A8a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street West Peachtree Street</td>
<td>460</td>
<td>$1,696</td>
<td>$424</td>
<td>$339</td>
<td>$2,459</td>
</tr>
<tr>
<td>A8b</td>
<td>Buffered Bike Lane</td>
<td>Peachtree Street Peachtree Circle</td>
<td>460</td>
<td>$15,366</td>
<td>$3,841</td>
<td>$3,073</td>
<td>$22,280</td>
</tr>
<tr>
<td>A9</td>
<td>Bike Lane</td>
<td>West Peachtree Street Peachtree Street</td>
<td>450</td>
<td>$9,897</td>
<td>$2,474</td>
<td>$1,979</td>
<td>$14,351</td>
</tr>
<tr>
<td>A10</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street End of back of commercial buildings</td>
<td>390</td>
<td>$848</td>
<td>$212</td>
<td>$170</td>
<td>$1,230</td>
</tr>
<tr>
<td>A11</td>
<td>Shared Lane Marking</td>
<td>17th Street Peachtree Circle</td>
<td>420</td>
<td>$1,060</td>
<td>$265</td>
<td>$212</td>
<td>$1,537</td>
</tr>
<tr>
<td>A1a</td>
<td>Cycle Track</td>
<td>West Peachtree Street Peachtree Street</td>
<td>2,850</td>
<td>$50,616</td>
<td>$12,654</td>
<td>$10,123</td>
<td>$73,393</td>
</tr>
<tr>
<td>A13a</td>
<td>Shared Lane Marking</td>
<td>West Peachtree Street Alliance Theatre</td>
<td>2,050</td>
<td>$5,936</td>
<td>$1,484</td>
<td>$1,187</td>
<td>$8,607</td>
</tr>
<tr>
<td>A13b</td>
<td>Bike Lane</td>
<td>West Peachtree Street Alliance Theatre</td>
<td>2,050</td>
<td>$49,576</td>
<td>$12,394</td>
<td>$9,915</td>
<td>$71,885</td>
</tr>
<tr>
<td>A14a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street Alliance Theatre</td>
<td>1,020</td>
<td>$5,936</td>
<td>$1,484</td>
<td>$1,187</td>
<td>$8,607</td>
</tr>
<tr>
<td>A14b</td>
<td>Bike Lane</td>
<td>Peachtree Street Alliance Theatre</td>
<td>1,020</td>
<td>$29,393</td>
<td>$7,348</td>
<td>$5,879</td>
<td>$42,620</td>
</tr>
<tr>
<td>A15</td>
<td>Cycle Track</td>
<td>West Peachtree Street 14th Street</td>
<td>870</td>
<td>$15,451</td>
<td>$3,863</td>
<td>$3,090</td>
<td>$22,404</td>
</tr>
<tr>
<td>A16a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street 14th Street 10th Street</td>
<td>1,880</td>
<td>$5,512</td>
<td>$1,378</td>
<td>$1,102</td>
<td>$7,992</td>
</tr>
<tr>
<td>A16b</td>
<td>Bike Lane</td>
<td>Peachtree Street 14th Street 10th Street</td>
<td>1,880</td>
<td>$77,368</td>
<td>$19,342</td>
<td>$15,474</td>
<td>$112,184</td>
</tr>
<tr>
<td>A17</td>
<td>Cycle Track</td>
<td>West Peachtree Street 12th Street 8th Street</td>
<td>1,860</td>
<td>$33,034</td>
<td>$8,258</td>
<td>$6,607</td>
<td>$47,999</td>
</tr>
<tr>
<td>A18</td>
<td>Cycle Track</td>
<td>West Peachtree Street 8th Street 5th Street</td>
<td>1,180</td>
<td>$24,577</td>
<td>$6,144</td>
<td>$4,915</td>
<td>$35,636</td>
</tr>
<tr>
<td>A19a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street 10th Street North Avenue</td>
<td>3,800</td>
<td>$10,812</td>
<td>$2,703</td>
<td>$2,162</td>
<td>$15,677</td>
</tr>
<tr>
<td>A19b</td>
<td>Bike Lane</td>
<td>Peachtree Street 10th Street North Avenue</td>
<td>3,800</td>
<td>$91,897</td>
<td>$22,974</td>
<td>$18,379</td>
<td>$133,250</td>
</tr>
<tr>
<td>A20</td>
<td>Cycle Track</td>
<td>West Peachtree Street 9th Street North Avenue</td>
<td>1,830</td>
<td>$32,591</td>
<td>$8,125</td>
<td>$6,500</td>
<td>$47,126</td>
</tr>
<tr>
<td>A21a</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street North Avenue Linden Avenue</td>
<td>540</td>
<td>$1,908</td>
<td>$477</td>
<td>$382</td>
<td>$2,767</td>
</tr>
<tr>
<td>A21b</td>
<td>Bike Lane</td>
<td>Peachtree Street North Avenue Linden Avenue</td>
<td>540</td>
<td>$11,860</td>
<td>$2,965</td>
<td>$2,372</td>
<td>$17,197</td>
</tr>
<tr>
<td>A22</td>
<td>Cycle Track</td>
<td>West Peachtree Street North Avenue Baltimore Place</td>
<td>1,100</td>
<td>$19,536</td>
<td>$4,884</td>
<td>$3,907</td>
<td>$28,327</td>
</tr>
<tr>
<td>A23</td>
<td>Bike Lane</td>
<td>Peachtree Street Linden Avenue Pine Street</td>
<td>880</td>
<td>$21,988</td>
<td>$5,272</td>
<td>$4,218</td>
<td>$35,577</td>
</tr>
<tr>
<td>A24</td>
<td>Cycle Track</td>
<td>West Peachtree Street Baltimore Place Pine Street</td>
<td>1,340</td>
<td>$5,698</td>
<td>$1,425</td>
<td>$1,140</td>
<td>$8,264</td>
</tr>
<tr>
<td>A25</td>
<td>Bike Lane</td>
<td>Peachtree Street Pine Street Ivan Allen Jr Boulevard</td>
<td>1,140</td>
<td>$31,183</td>
<td>$7,796</td>
<td>$6,327</td>
<td>$45,215</td>
</tr>
<tr>
<td>A26</td>
<td>Cycle Track</td>
<td>West Peachtree Street Ivan Allen Jr Boulevard Portier Place</td>
<td>110</td>
<td>$3,248</td>
<td>$812</td>
<td>$650</td>
<td>$4,700</td>
</tr>
<tr>
<td>A27</td>
<td>Cycle Track</td>
<td>West Peachtree Street Pine Street Ivan Allen Jr Boulevard</td>
<td>940</td>
<td>$25,671</td>
<td>$6,418</td>
<td>$5,134</td>
<td>$37,224</td>
</tr>
<tr>
<td>A28</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street West Peachtree Street John Portman Boulevard</td>
<td>820</td>
<td>$14,582</td>
<td>$3,646</td>
<td>$2,916</td>
<td>$21,144</td>
</tr>
<tr>
<td>A29</td>
<td>Cycle Track</td>
<td>Gilmer Street Peachtree Center Avenue Courtland Avenue</td>
<td>490</td>
<td>$54,115</td>
<td>$13,529</td>
<td>$10,823</td>
<td>$78,467</td>
</tr>
<tr>
<td>A30</td>
<td>Cycle Track</td>
<td>Courtland Avenue/ Washington Street Memorial Drive</td>
<td>2,910</td>
<td>$143,341</td>
<td>$35,835</td>
<td>$28,668</td>
<td>$207,844</td>
</tr>
</tbody>
</table>

Table continues on next page.
<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Distance (feet)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A31</td>
<td>Bike Lane</td>
<td>Peachtree Street</td>
<td>Martin Luther King Jr Boulevard</td>
<td>Memorial Drive</td>
<td>2,420</td>
<td>$38,524</td>
<td>$14,631</td>
<td>$11,705</td>
<td>$84,859</td>
</tr>
<tr>
<td>A32</td>
<td>Buffered Bike Lane</td>
<td>Memorial Drive</td>
<td>Peachtree Street</td>
<td>Fraser Street</td>
<td>2,790</td>
<td>$58,273</td>
<td>$24,568</td>
<td>$19,655</td>
<td>$142,496</td>
</tr>
<tr>
<td>A33</td>
<td>Buffered Bike Lane</td>
<td>Whitehall Street</td>
<td>Peachtree Street</td>
<td>Interstate 20</td>
<td>4,720</td>
<td>$142,701</td>
<td>$35,675</td>
<td>$28,540</td>
<td>$206,917</td>
</tr>
<tr>
<td>A34</td>
<td>Multi-Use Path</td>
<td>Peters Street</td>
<td>Walker Street</td>
<td>Chapel Street</td>
<td>2,280</td>
<td>$370,800</td>
<td>$77,700</td>
<td>$62,190</td>
<td>$490,690</td>
</tr>
<tr>
<td>A35</td>
<td>Multi-Use Path</td>
<td>Whitehall Street</td>
<td>Chapel Street</td>
<td>Oak Street</td>
<td>1,050</td>
<td>$140,700</td>
<td>$35,175</td>
<td>$28,140</td>
<td>$204,015</td>
</tr>
<tr>
<td>A36</td>
<td>Bike Lane</td>
<td>Murphy Avenue</td>
<td>Interstate 20</td>
<td>Lee Street</td>
<td>1,230</td>
<td>$27,052</td>
<td>$6,763</td>
<td>$5,410</td>
<td>$39,223</td>
</tr>
<tr>
<td>A37</td>
<td>Multi-Use Path</td>
<td>Whitehall Street</td>
<td>Oak Street</td>
<td>Ralph David Abernathy Boulevard</td>
<td>880</td>
<td>$159,096</td>
<td>$39,774</td>
<td>$31,819</td>
<td>$230,689</td>
</tr>
<tr>
<td>A38</td>
<td>Multi-Use Path</td>
<td>Lee Street</td>
<td>Murphy Avenue</td>
<td>Ralph David Abernathy Boulevard</td>
<td>2,470</td>
<td>$331,700</td>
<td>$82,925</td>
<td>$66,340</td>
<td>$480,965</td>
</tr>
<tr>
<td>A39</td>
<td>Bike Lane</td>
<td>Murphy Avenue</td>
<td>Lee Street</td>
<td>Allene Avenue</td>
<td>2,640</td>
<td>$28,291</td>
<td>$7,073</td>
<td>$5,658</td>
<td>$41,022</td>
</tr>
<tr>
<td>A40</td>
<td>Bike Lane</td>
<td>Murphy Avenue</td>
<td>Allene Avenue</td>
<td>Atlanta BeltLine</td>
<td>1,500</td>
<td>$16,420</td>
<td>$4,105</td>
<td>$3,284</td>
<td>$23,809</td>
</tr>
<tr>
<td>A41</td>
<td>Multi-Use Path</td>
<td>Lee Street</td>
<td>Murphy Avenue</td>
<td>Sylvan Road</td>
<td>2,250</td>
<td>$351,450</td>
<td>$87,863</td>
<td>$70,290</td>
<td>$509,603</td>
</tr>
<tr>
<td>A42</td>
<td>Buffered Bike Lane</td>
<td>Murphy Avenue</td>
<td>Atlanta BeltLine</td>
<td>Sylvan Road</td>
<td>710</td>
<td>$14,896</td>
<td>$3,724</td>
<td>$2,979</td>
<td>$21,599</td>
</tr>
<tr>
<td>A43</td>
<td>Cycle Track</td>
<td>Centennial Olympic Park Drive</td>
<td>Marietta Street</td>
<td>Phillips Arena</td>
<td>790</td>
<td>$16,734</td>
<td>$4,183</td>
<td>$3,347</td>
<td>$24,264</td>
</tr>
<tr>
<td>A44</td>
<td>Cycle Track</td>
<td>Centennial Olympic Park Drive</td>
<td>Phillips Arena</td>
<td>Martin Luther King Jr Drive</td>
<td>1,270</td>
<td>$62,348</td>
<td>$15,587</td>
<td>$12,470</td>
<td>$90,404</td>
</tr>
<tr>
<td>A45</td>
<td>Cycle Track</td>
<td>Centennial Olympic Park Drive</td>
<td>Martin Luther King Jr Drive</td>
<td>Chapel Street</td>
<td>830</td>
<td>$34,605</td>
<td>$9,265</td>
<td>$10,921</td>
<td>$79,178</td>
</tr>
<tr>
<td>A46</td>
<td>Cycle Track</td>
<td>Centennial Olympic Park Drive</td>
<td>Chapel Street</td>
<td>Nelson Street</td>
<td>510</td>
<td>$48,974</td>
<td>$12,244</td>
<td>$9,795</td>
<td>$71,013</td>
</tr>
<tr>
<td>A47</td>
<td>Cycle Track</td>
<td>Courtland Street</td>
<td>Ponce de Leon Avenue</td>
<td>Ralph McGill Boulevard</td>
<td>3,000</td>
<td>$64,545</td>
<td>$16,136</td>
<td>$12,909</td>
<td>$93,590</td>
</tr>
<tr>
<td>A48</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>Porter Place</td>
<td>West Peachtree Street</td>
<td>400</td>
<td>$6,473</td>
<td>$1,618</td>
<td>$1,295</td>
<td>$9,388</td>
</tr>
<tr>
<td>Total</td>
<td>Shared Lane Marking</td>
<td>Peachtree Street</td>
<td>Porter Place</td>
<td>West Peachtree Street</td>
<td>400</td>
<td>$6,473</td>
<td>$1,618</td>
<td>$1,295</td>
<td>$9,388</td>
</tr>
</tbody>
</table>

Total 78,370 $2,960,131 $740,033 $592,026 $4,292,190
Corridor B Cost Estimates

The following tables include additional cost estimate information for projects and cross sections for **Corridor B: Knight Park–Midtown–Virginia-Highland**. The tables include the following information:

- **Project or Cross Section ID**
- **Facility Type**
- **Street**
- **Beginning Point (To)**
- **Ending Point (From)**
- **Segment Length (Distance)**
- **Construction Cost**
- **Design Cost (25%)**
- **Contingency Cost (20%)**
- **Total Cost**

Cost estimates include an estimate of probable cost for construction, design cost (25% of construction cost), and contingency cost (20% of construction costs). Construction costs can include re-striping costs, signal improvements, new pavement markings, and multi-use path construction. Construction costs do not include resurfacing costs. Cost estimates for 1000 to 4000 series projects are not provided because they have already been funded, are in the process of being designed, or are in the process of being constructed.

Corridor B Projects

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Distance (miles)</th>
<th>Cross Section(s)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5013</td>
<td>Raised Cycle Track</td>
<td>10th Street</td>
<td>Williams Street</td>
<td>Fowler Street</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5020</td>
<td>Bike Lane-Bufferd Bike Lane</td>
<td>West Marietta Street</td>
<td>Marietta Boulevard</td>
<td>Marietta Street</td>
<td>1.2 B1, B2, B3</td>
<td>$164,299</td>
<td>$41,075</td>
<td>$32,860</td>
<td>$238,234</td>
<td></td>
</tr>
<tr>
<td>5021</td>
<td>Bike Boulevard</td>
<td>8th Street</td>
<td>Brady Avenue</td>
<td>Northside Drive</td>
<td>0.1 B4</td>
<td>$1,327</td>
<td>$332</td>
<td>$265</td>
<td>$1,925</td>
<td></td>
</tr>
<tr>
<td>5022</td>
<td>Bike Boulevard</td>
<td>8th Street</td>
<td>Northside Drive</td>
<td>Hemphill Avenue</td>
<td>0.2 B5</td>
<td>$116,003</td>
<td>$29,001</td>
<td>$23,201</td>
<td>$168,204</td>
<td></td>
</tr>
<tr>
<td>5023</td>
<td>Multi-Use Path</td>
<td>10th Street</td>
<td>Howell Mill Road</td>
<td>Northside Drive</td>
<td>0.2 B23</td>
<td>$242,000</td>
<td>$60,500</td>
<td>$48,400</td>
<td>$350,900</td>
<td></td>
</tr>
<tr>
<td>5024</td>
<td>Multi-Use Path</td>
<td>10th Street</td>
<td>Northside Drive</td>
<td>Fowler Street</td>
<td>0.8 B7</td>
<td>$463,300</td>
<td>$116,325</td>
<td>$93,060</td>
<td>$674,685</td>
<td></td>
</tr>
<tr>
<td>5025</td>
<td>Bike Lane</td>
<td>Ferst Drive</td>
<td>Hemphill Avenue</td>
<td>Atlantic Drive</td>
<td>0.2 B6, B8</td>
<td>$9,312</td>
<td>$2,328</td>
<td>$1,862</td>
<td>$13,303</td>
<td></td>
</tr>
<tr>
<td>5026</td>
<td>Cycle Track</td>
<td>Williams Street</td>
<td>12th Street</td>
<td>8th Street</td>
<td>0.3 B9</td>
<td>$93,546</td>
<td>$23,387</td>
<td>$18,709</td>
<td>$135,642</td>
<td></td>
</tr>
<tr>
<td>5027</td>
<td>Bike Boulevard</td>
<td>12th Street</td>
<td>Williams Street</td>
<td>Piedmont Avenue</td>
<td>0.7 B10, B11, B12, B13, B14, B15</td>
<td>$20,295</td>
<td>$5,074</td>
<td>$4,059</td>
<td>$29,428</td>
<td></td>
</tr>
<tr>
<td>5028</td>
<td>Bike Boulevard</td>
<td>8th Street</td>
<td>Williams Street</td>
<td>10th Street</td>
<td>0.8 B16, B17, B18, B19, B20, B21, B22</td>
<td>$15,764</td>
<td>$3,926</td>
<td>$3,141</td>
<td>$22,870</td>
<td></td>
</tr>
<tr>
<td>5029</td>
<td>Bike Lane</td>
<td>14th Street</td>
<td>Howell Mill Road</td>
<td>Hemphill Avenue</td>
<td>0.2 B24</td>
<td>$31,438</td>
<td>$7,860</td>
<td>$6,288</td>
<td>$45,586</td>
<td></td>
</tr>
<tr>
<td>5030</td>
<td>Bike Lane</td>
<td>Kanuga Street</td>
<td>Virginia Avenue</td>
<td>Monroe Drive</td>
<td>0.1 B25</td>
<td>$15,325</td>
<td>$3,831</td>
<td>$3,065</td>
<td>$22,221</td>
<td></td>
</tr>
</tbody>
</table>

| Total | 4.8 | $1,174,550 | $293,638 | $234,910 | $1,703,098 |

Notes

1. 1000 series: Facilities to be built in 2013
2. 2000 series: Facilities to be built in 2014
3. 3000 series: Facilities to be built in 2015
4. 4000 series: Unfunded high-priority projects we hope to fund by 2016
5. 5000 series: Facilities developed as part of the Cycle Atlanta: Phase 1.0 Study; 5000 - 5019 is for Corridor A projects, 5020 - 5039 is for Corridor B projects, 5040-5059 is for Corridor C projects, 5060 - 5079 is for Corridor D projects, and 5080 - 5099 is for Corridor E projects
<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street From</th>
<th>To Street</th>
<th>Distance (feet)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Bike Lane</td>
<td>West Marietta Street</td>
<td>Marietta Boulevard</td>
<td>4,380</td>
<td>$105,923</td>
<td>$26,481</td>
<td>$21,185</td>
<td>$153,588</td>
</tr>
<tr>
<td>B2</td>
<td>Buffered Bike Lane</td>
<td>West Marietta Street</td>
<td>Perry Boulevard</td>
<td>1,260</td>
<td>$42,365</td>
<td>$10,591</td>
<td>$8,473</td>
<td>$61,430</td>
</tr>
<tr>
<td>B3</td>
<td>Bike Lane</td>
<td>West Marietta Street</td>
<td>Brady Avenue</td>
<td>770</td>
<td>$16,011</td>
<td>$4,003</td>
<td>$3,202</td>
<td>$23,216</td>
</tr>
<tr>
<td>B4</td>
<td>Shared Lane Marking</td>
<td>8th Street</td>
<td>Brady Avenue</td>
<td>550</td>
<td>$1,327</td>
<td>$332</td>
<td>$265</td>
<td>$1,925</td>
</tr>
<tr>
<td>B5</td>
<td>Shared Lane Marking</td>
<td>8th Street</td>
<td>Howell Mill Road</td>
<td>830</td>
<td>$116,003</td>
<td>$29,001</td>
<td>$23,201</td>
<td>$168,204</td>
</tr>
<tr>
<td>B6</td>
<td>Bike Lane</td>
<td>Ferst Drive</td>
<td>Hemphill Avenue</td>
<td>430</td>
<td>$4,835</td>
<td>$1,209</td>
<td>$967</td>
<td>$7,010</td>
</tr>
<tr>
<td>B7</td>
<td>Multi-Use Path</td>
<td>10th Street</td>
<td>Northside Drive</td>
<td>4,230</td>
<td>$465,700</td>
<td>$116,325</td>
<td>$93,060</td>
<td>$674,685</td>
</tr>
<tr>
<td>B8</td>
<td>Bike Lane</td>
<td>Ferst Drive</td>
<td>State Street</td>
<td>430</td>
<td>$4,478</td>
<td>$1,119</td>
<td>$896</td>
<td>$6,493</td>
</tr>
<tr>
<td>B9</td>
<td>Cycle Track</td>
<td>Williams Street</td>
<td>8th Street</td>
<td>1,770</td>
<td>$93,546</td>
<td>$23,387</td>
<td>$18,709</td>
<td>$135,642</td>
</tr>
<tr>
<td>B10</td>
<td>Bike Lane</td>
<td>12th Street</td>
<td>Williams Street</td>
<td>430</td>
<td>$4,908</td>
<td>$1,227</td>
<td>$982</td>
<td>$7,116</td>
</tr>
<tr>
<td>B11</td>
<td>Shared Lane Marking</td>
<td>12th Street</td>
<td>Spring Street</td>
<td>430</td>
<td>$1,038</td>
<td>$259</td>
<td>$208</td>
<td>$1,505</td>
</tr>
<tr>
<td>B12</td>
<td>Contra-Flow Lane</td>
<td>12th Street</td>
<td>West Peachtree Street</td>
<td>1,130</td>
<td>$7,247</td>
<td>$1,812</td>
<td>$1,449</td>
<td>$10,508</td>
</tr>
<tr>
<td>B13</td>
<td>Shared Lane Marking</td>
<td>12th Street</td>
<td>Crescent Avenue</td>
<td>420</td>
<td>$1,014</td>
<td>$253</td>
<td>$203</td>
<td>$1,470</td>
</tr>
<tr>
<td>B14</td>
<td>Shared Lane Marking</td>
<td>12th Street</td>
<td>Peachtree Street</td>
<td>260</td>
<td>$627</td>
<td>$157</td>
<td>$125</td>
<td>$910</td>
</tr>
<tr>
<td>B15</td>
<td>Shared Lane Marking</td>
<td>12th Street</td>
<td>Juniper Street</td>
<td>1,020</td>
<td>$5,462</td>
<td>$1,365</td>
<td>$1,092</td>
<td>$7,919</td>
</tr>
<tr>
<td>B16</td>
<td>Shared Lane Marking</td>
<td>8th Street</td>
<td>Williams Street</td>
<td>550</td>
<td>$1,327</td>
<td>$332</td>
<td>$265</td>
<td>$1,925</td>
</tr>
<tr>
<td>B17</td>
<td>Shared Lane Marking</td>
<td>8th Street</td>
<td>Spring Street</td>
<td>460</td>
<td>$1,110</td>
<td>$278</td>
<td>$222</td>
<td>$1,610</td>
</tr>
<tr>
<td>B18</td>
<td>Contra-Flow Lane</td>
<td>8th Street</td>
<td>West Peachtree Street</td>
<td>490</td>
<td>$3,143</td>
<td>$786</td>
<td>$629</td>
<td>$4,557</td>
</tr>
<tr>
<td>B19</td>
<td>Contra-Flow Lane</td>
<td>8th Street</td>
<td>Cypress Street</td>
<td>460</td>
<td>$2,950</td>
<td>$738</td>
<td>$590</td>
<td>$4,278</td>
</tr>
<tr>
<td>B20</td>
<td>Shared Lane Marking</td>
<td>8th Street</td>
<td>Peachtree Street</td>
<td>950</td>
<td>$2,293</td>
<td>$573</td>
<td>$459</td>
<td>$3,324</td>
</tr>
<tr>
<td>B21</td>
<td>Contra-Flow Lane</td>
<td>8th Street</td>
<td>Piedmont Avenue</td>
<td>460</td>
<td>$2,950</td>
<td>$738</td>
<td>$590</td>
<td>$4,278</td>
</tr>
<tr>
<td>B22</td>
<td>Shared Lane Marking</td>
<td>8th Street</td>
<td>Myrtle Street</td>
<td>460</td>
<td>$2,950</td>
<td>$738</td>
<td>$590</td>
<td>$4,278</td>
</tr>
<tr>
<td>B23</td>
<td>Bike Lane</td>
<td>10th Street</td>
<td>Howell Mill Road</td>
<td>1,100</td>
<td>$242,000</td>
<td>$60,500</td>
<td>$48,400</td>
<td>$330,900</td>
</tr>
<tr>
<td>B24</td>
<td>Bike Lane</td>
<td>14th Street</td>
<td>Howell Mill Road</td>
<td>1,300</td>
<td>$31,438</td>
<td>$7,860</td>
<td>$6,288</td>
<td>$45,586</td>
</tr>
<tr>
<td>B25</td>
<td>Bike Lane</td>
<td>Kanuga Street</td>
<td>Virginia Avenue</td>
<td>410</td>
<td>$15,325</td>
<td>$3,831</td>
<td>$3,065</td>
<td>$22,221</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>25,320</td>
<td>$1,174,550</td>
<td>$293,638</td>
<td>$234,910</td>
<td>$1,703,098</td>
</tr>
</tbody>
</table>
Corridor C Cost Estimates

The following tables include additional cost estimate information for projects and cross sections for **Corridor C: Grove Park–Downtown–Poncey-Highland**. The tables include the following information:

- Project or Cross Section ID
- Facility Type
- Street
- Beginning Point (To)
- Ending Point (From)
- Segment Length (Distance)
- Construction Cost
- Design Cost
- Contingency Cost
- Total Cost

Cost estimates include an estimate of probable cost for construction, design cost (25% of construction cost), and contingency cost (20% of construction cost). Construction costs can include re-stripping costs, signal improvements, new pavement markings, and multi-use path construction. Construction costs do not include resurfacing costs. Cost estimates for 1000 to 4000 series projects are not provided because they have already been funded, are in the process of being designed, or are in the process of being constructed.

<table>
<thead>
<tr>
<th>Corridor C Projects ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Distance (miles)</th>
<th>Cross Section(s)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 Bike Lane</td>
<td>Joseph E Boone Boulevard</td>
<td>Holly Street</td>
<td>Northside Drive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5040 Bike Lane</td>
<td>Joseph E Boone Boulevard</td>
<td>Chappell Road</td>
<td>Northside Drive</td>
<td>1.3</td>
<td>C1, C11, C12</td>
<td></td>
<td>$149,517</td>
<td>$37,379</td>
<td>$29,903</td>
<td>$216,799</td>
</tr>
<tr>
<td>5041 Bike Lane</td>
<td>Ivan Allen Jr Boulevard</td>
<td>Centennial Olympic Park Drive</td>
<td>Williams Street</td>
<td>0.1</td>
<td>C3</td>
<td></td>
<td>$11,608</td>
<td>$2,902</td>
<td>$2,322</td>
<td>$16,832</td>
</tr>
<tr>
<td>5042 Contra-Flow Lane</td>
<td>Porter Place</td>
<td>West Peachtree Street</td>
<td>Peachtree Street</td>
<td>0.1</td>
<td>C14</td>
<td></td>
<td>$2,950</td>
<td>$738</td>
<td>$590</td>
<td>$4,278</td>
</tr>
<tr>
<td>5043 Bike Lane-Bufford Bike Lane</td>
<td>Ivan Allen Jr Boulevard</td>
<td>West Peachtree Street</td>
<td>Courtland Street</td>
<td>0.1</td>
<td>C13</td>
<td></td>
<td>$27,968</td>
<td>$6,992</td>
<td>$5,594</td>
<td>$40,554</td>
</tr>
<tr>
<td>5044 Bike Lane</td>
<td>Ralph McGill Boulevard</td>
<td>Courtland Street</td>
<td>Freedom Parkway</td>
<td>3.0</td>
<td>C5, C6, C7, C8, C9, C10</td>
<td></td>
<td>$416,841</td>
<td>$104,210</td>
<td>$83,368</td>
<td>$604,419</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td></td>
<td>$608,884</td>
<td>$152,221</td>
<td>$121,777</td>
<td>$882,881</td>
</tr>
</tbody>
</table>

Notes

1. 1000 series: Facilities to be built in 2013
2. 2000 series: Facilities to be built in 2014
3. 3000 series: Facilities to be built in 2015
4. 4000 series: Unfunded high-priority projects we hope to fund by 2016
5. 5000 series: Facilities developed as part of the Cycle Atlanta: Phase 1.0 Study; 5000 - 5019 is for Corridor A projects, 5020 - 5039 is for Corridor B projects, 5040-5059 is for Corridor C projects, 5060 - 5079 is for Corridor D projects, and 5080 - 5099 is for Corridor E projects
Corridor C Cross Sections

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street 1</th>
<th>To</th>
<th>From</th>
<th>Distance (feet)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Bike Lane</td>
<td>Joseph E. Boone Boulevard</td>
<td>Chappell Road</td>
<td>Joseph E. Lowery Boulevard</td>
<td>4,750</td>
<td>$96,797</td>
<td>$24,199</td>
<td>$19,359</td>
<td>$140,356</td>
</tr>
<tr>
<td>C3</td>
<td>Bike Lane</td>
<td>Ivan Allen Jr Boulevard</td>
<td>Centennial Olympic Park Drive</td>
<td>Williams Street</td>
<td>480</td>
<td>$11,608</td>
<td>$2,902</td>
<td>$2,322</td>
<td>$16,832</td>
</tr>
<tr>
<td>C4</td>
<td>Buffered Bike Lane</td>
<td>Ralph McGill Boulevard</td>
<td>Peachtree Street</td>
<td>Courtland Street</td>
<td>640</td>
<td>$15,477</td>
<td>$3,869</td>
<td>$3,095</td>
<td>$22,442</td>
</tr>
<tr>
<td>C6</td>
<td>Bike Lane</td>
<td>Ralph McGill Boulevard</td>
<td>Piedmont Avenue</td>
<td>Central Park Place</td>
<td>8,350</td>
<td>$201,931</td>
<td>$50,483</td>
<td>$40,386</td>
<td>$292,800</td>
</tr>
<tr>
<td>C7</td>
<td>Bike Lane</td>
<td>Ralph McGill Boulevard</td>
<td>Central Park Place</td>
<td>Midblock between Boulevard and Glen Iris Drive</td>
<td>2,490</td>
<td>$60,217</td>
<td>$15,054</td>
<td>$12,043</td>
<td>$87,314</td>
</tr>
<tr>
<td>C8</td>
<td>Bike Lane</td>
<td>Ralph McGill Boulevard</td>
<td>Midblock between Boulevard and Glen Iris Drive</td>
<td>Wabash Avenue</td>
<td>980</td>
<td>$21,553</td>
<td>$5,388</td>
<td>$4,311</td>
<td>$31,253</td>
</tr>
<tr>
<td>C9</td>
<td>Bike Lane</td>
<td>Ralph McGill Boulevard</td>
<td>Wabash Avenue</td>
<td>Ashley Avenue</td>
<td>1,280</td>
<td>$30,955</td>
<td>$7,739</td>
<td>$6,191</td>
<td>$44,884</td>
</tr>
<tr>
<td>C10</td>
<td>Bike Lane</td>
<td>Ralph McGill Boulevard</td>
<td>Ashley Avenue</td>
<td>Freedom Parkway</td>
<td>1,840</td>
<td>$86,708</td>
<td>$21,677</td>
<td>$17,342</td>
<td>$125,726</td>
</tr>
<tr>
<td>C11</td>
<td>Bike Lane</td>
<td>Joseph E. Boone Boulevard</td>
<td>Joseph E. Lowery Boulevard</td>
<td>James P Brawley Drive</td>
<td>1,490</td>
<td>$36,033</td>
<td>$9,008</td>
<td>$7,207</td>
<td>$52,248</td>
</tr>
<tr>
<td>C12</td>
<td>Bike Lane</td>
<td>Joseph E. Boone Boulevard</td>
<td>Maple Street</td>
<td>Northside Drive</td>
<td>690</td>
<td>$16,687</td>
<td>$4,172</td>
<td>$3,337</td>
<td>$24,195</td>
</tr>
<tr>
<td>C13</td>
<td>Bike Lane</td>
<td>Ivan Allen Jr Boulevard</td>
<td>West Peachtree Street</td>
<td>Peachtree Street</td>
<td>540</td>
<td>$13,059</td>
<td>$3,265</td>
<td>$2,612</td>
<td>$18,936</td>
</tr>
<tr>
<td>C14</td>
<td>Contra-Flow Lane</td>
<td>Porter Place</td>
<td>West Peachtree Street</td>
<td>Peachtree Street</td>
<td>460</td>
<td>$2,950</td>
<td>$738</td>
<td>$590</td>
<td>$4,278</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24,490</td>
<td>$608,884</td>
<td>$152,221</td>
<td>$121,777</td>
<td>$882,881</td>
</tr>
</tbody>
</table>
Corridor D Cost Estimates

The following tables include additional cost estimate information for projects and cross sections for Corridor D: Mozley Park–Downtown–Grant Park. The tables include the following information:

- Project or Cross Section ID
- Facility Type
- Street
- Beginning Point (To)
- Ending Point (From)
- Segment Length (Distance)
- Construction Cost
- Design Cost
- Contingency Cost
- Total Cost

Cost estimates include an estimate of probable cost for construction, design cost (25% of construction cost), and contingency cost (20% of construction costs). Construction costs can include re-striping costs, signal improvements, new pavement markings, and multi-use path construction. Construction costs do not include resurfacing costs. Cost estimates for 1000 to 4000 series projects are not provided because they have already been funded, are in the process of being designed, or are in the process of being constructed.

<table>
<thead>
<tr>
<th>Corridor D Projects</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Distance (miles)</th>
<th>Cross Section(s)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 Bike Lane</td>
<td>Martin Luther King Jr Drive-Mitchell Street</td>
<td>James P Brawley Drive</td>
<td>Magnum Street</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2031 Hard Surface Multi-Use Path</td>
<td>Lena Street</td>
<td>Booker Street</td>
<td>Magnum Street</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2032 Bike Boulevard</td>
<td>Fraser Street-Woodward Avenue</td>
<td>Memorial Drive</td>
<td>Chastain Street</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5060 Bike Lane</td>
<td>Mitchell Street</td>
<td>Spring Street</td>
<td>Washington Street</td>
<td>0.4</td>
<td>D4</td>
<td>$50,145</td>
<td>$12,536</td>
<td>$10,029</td>
<td>$72,710</td>
</tr>
<tr>
<td>5061 Multi-Use Path</td>
<td>Andrew Young International Boulevard</td>
<td>Georgia Dome Drive</td>
<td>Marietta Street</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5062 Multi-Use Path</td>
<td>Capital Square-Memorial Drive</td>
<td>Fraser Street</td>
<td>Washington Street</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5063 Bike Boulevard</td>
<td>Fraser Street-Woodward Avenue</td>
<td>Memorial Drive</td>
<td>Chastain Street</td>
<td>1.3</td>
<td>D5, D6</td>
<td>$148,069</td>
<td>$37,017</td>
<td>$29,614</td>
<td>$214,700</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>D5, D6</td>
<td>$608,884</td>
<td>$152,221</td>
<td>$121,777</td>
<td>$882,881</td>
</tr>
</tbody>
</table>

Notes

1. 1000 series: Facilities to be built in 2013
2. 2000 series: Facilities to be built in 2014
3. 3000 series: Facilities to be built in 2015
4. 4000 series: Unfunded high-priority projects we hope to fund by 2016
5. 5000 series: Facilities developed as part of the Cycle Atlanta: Phase 1.0 Study; 5000 - 5019 is for Corridor A projects, 5020 - 5039 is for Corridor B projects, 5040-5059 is for Corridor C projects, 5060 - 5079 is for Corridor D projects, and 5080 - 5099 is for Corridor E projects
<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Distance (feet)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>no bikeway facility</td>
<td>Martin Luther King Jr Drive</td>
<td>Chappell Road</td>
<td>Offie Street</td>
<td>1,700</td>
<td>$46,818</td>
<td>$11,703</td>
<td>$9,364</td>
<td>$67,886</td>
</tr>
<tr>
<td>D4</td>
<td>Bike Lane</td>
<td>Mitchell Street</td>
<td>Spring Street</td>
<td>Washington Street</td>
<td>2,280</td>
<td>$50,145</td>
<td>$12,536</td>
<td>$10,029</td>
<td>$72,710</td>
</tr>
<tr>
<td>D5</td>
<td>Shared Lane Marking</td>
<td>Woodward Avenue</td>
<td>Kelly Street</td>
<td>Chastain Street</td>
<td>5,090</td>
<td>$141,984</td>
<td>$35,496</td>
<td>$28,397</td>
<td>$205,877</td>
</tr>
<tr>
<td>D6</td>
<td>Shared Lane Marking</td>
<td>Woodward Avenue</td>
<td>Memorial Drive</td>
<td>Corvally Street</td>
<td>1,900</td>
<td>$30,286</td>
<td>$7,572</td>
<td>$6,097</td>
<td>$43,915</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,970</td>
<td>$269,233</td>
<td>$67,308</td>
<td>$53,847</td>
<td>$390,388</td>
</tr>
</tbody>
</table>
Corridor E Cost Estimates

The following tables include additional cost estimate information for projects and cross sections for Corridor E: Underwood Hills – Downtown – Candler Park. The tables include the following information:

- Project or Cross Section ID
- Facility Type
- Street
- Beginning Point (To)
- Ending Point (From)
- Segment Length (Distance)
- Construction Cost
- Design Cost
- Contingency Cost
- Total Cost

Cost estimates include an estimate of probable cost for construction, design cost (25% of construction cost), and contingency cost (20% of construction costs). Construction costs can include re-striping costs, signal improvements, new pavement markings, and multi-use path construction. Construction costs do not include resurfacing costs. Cost estimates for 1000 to 4000 series projects are not provided because they have already been funded, are in the process of being designed, or are in the process of being constructed.

<table>
<thead>
<tr>
<th>Corridor E Projects ID</th>
<th>Facility Type</th>
<th>Street</th>
<th>To</th>
<th>From</th>
<th>Distance (miles)</th>
<th>Cross Section(s)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1003</td>
<td>Bike Lane</td>
<td>Edgewood Avenue Boulevard</td>
<td>Hurt Street</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2007</td>
<td>Bike Lane</td>
<td>Edgewood Avenue–Auburn Avenue</td>
<td>Peachtree Street</td>
<td>Jackson Street</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5080</td>
<td>Bike Lane/Shared Lane Marking</td>
<td>Howell Mill Road Chattahoochee Avenue</td>
<td>West Marietta Street</td>
<td>E1, E2, E3, E4, E5</td>
<td>$119,679</td>
<td>$29,920</td>
<td>$23,936</td>
<td>$173,535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5081</td>
<td>Bike Lane</td>
<td>Marietta Street</td>
<td>Howell Mill Road</td>
<td>Baker Street</td>
<td>E6, E7, E8, E11, E12, E14, E15</td>
<td>$189,627</td>
<td>$47,407</td>
<td>$37,925</td>
<td>$274,960</td>
<td></td>
</tr>
<tr>
<td>5082</td>
<td>Shared Lane Marking</td>
<td>Hampton Street and 3rd Street</td>
<td>Marietta Street</td>
<td>8th Street</td>
<td>E21, E22</td>
<td>$2,848</td>
<td>$712</td>
<td>$570</td>
<td>$4,129</td>
<td></td>
</tr>
<tr>
<td>5083</td>
<td>Multi-Use Path</td>
<td>Tech Parkway</td>
<td>Northside Drive</td>
<td>North Avenue</td>
<td>E10</td>
<td>$101,470</td>
<td>$25,367</td>
<td>$20,294</td>
<td>$147,131</td>
<td></td>
</tr>
<tr>
<td>5084</td>
<td>Cycle Track</td>
<td>Luckie Street</td>
<td>North Avenue</td>
<td>Baker Street</td>
<td>E13, E16</td>
<td>$309,021</td>
<td>$77,255</td>
<td>$61,804</td>
<td>$448,080</td>
<td></td>
</tr>
<tr>
<td>5085</td>
<td>Cycle Track</td>
<td>Baker Street and Centennial Olympic Park Drive</td>
<td>Baker Street from Luckie Street to Centennial Olympic Park Drive</td>
<td>Centennial Olympic Park Drive</td>
<td>E7</td>
<td>$322,025</td>
<td>$80,506</td>
<td>$64,405</td>
<td>$466,937</td>
<td></td>
</tr>
<tr>
<td>5086</td>
<td>Shared Lane Marking</td>
<td>Park Avenue Place</td>
<td>Marietta Street</td>
<td>Baker Street</td>
<td>0.2</td>
<td>$2,365</td>
<td>$591</td>
<td>$473</td>
<td>$3,429</td>
<td></td>
</tr>
<tr>
<td>5087</td>
<td>Contra-Flow Lane</td>
<td>Walton Street</td>
<td>Centennial Olympic Park Drive</td>
<td>Peachtree Street</td>
<td>E17</td>
<td>$75,010</td>
<td>$18,752</td>
<td>$15,002</td>
<td>$108,764</td>
<td></td>
</tr>
<tr>
<td>5088</td>
<td>Share Lane Marking and Bike Lanes</td>
<td>Euclid Avenue</td>
<td>Edgewood Avenue</td>
<td>Moreland Avenue</td>
<td>E18, E19, E20</td>
<td>$22,865</td>
<td>$5,716</td>
<td>$4,573</td>
<td>$33,155</td>
<td></td>
</tr>
<tr>
<td>5089</td>
<td>Bike Lane</td>
<td>Brady Avenue</td>
<td>Howell Mill Road</td>
<td>West Marietta Street</td>
<td>E23, E24</td>
<td>$23,730</td>
<td>$5,932</td>
<td>$4,746</td>
<td>$34,409</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.2</td>
<td>$1,168,640</td>
<td>$292,160</td>
<td>$233,728</td>
<td>$1,694,529</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. 1000 series: Facilities to be built in 2013
2. 2000 series: Facilities to be built in 2014
3. 3000 series: Facilities to be built in 2015
4. 4000 series: Unfunded high-priority projects we hope to fund by 2016
5. 5000 series: Facilities developed as part of the Cycle Atlanta: Phase 1.0 Study; 5000 - 5019 is for Corridor A projects, 5020 - 5039 is for Corridor B projects, 5040-5059 is for Corridor C projects, 5060 - 5079 is for Corridor D projects, and 5080 - 5099 is for Corridor E projects
Corridor E Cross Sections

<table>
<thead>
<tr>
<th>ID</th>
<th>Facility Type</th>
<th>Street To</th>
<th>Street From</th>
<th>Distance (feet)</th>
<th>Construction Cost</th>
<th>Design Cost (25%)</th>
<th>Contingency Cost (20%)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Bike Lane</td>
<td>Howell Mill Road</td>
<td>Chattahoochee Avenue</td>
<td>1,240</td>
<td>$25,269</td>
<td>$6,317</td>
<td>$5,054</td>
<td>$36,640</td>
</tr>
<tr>
<td>E2</td>
<td>Bike Lane</td>
<td>Howell Mill Road</td>
<td>Morris Street</td>
<td>1,299</td>
<td>$31,414</td>
<td>$7,854</td>
<td>$6,283</td>
<td>$45,551</td>
</tr>
<tr>
<td>E3</td>
<td>Bike Lane</td>
<td>Howell Mill Road</td>
<td>Trabert Avenue</td>
<td>2,080</td>
<td>$30,333</td>
<td>$7,583</td>
<td>$6,067</td>
<td>$43,983</td>
</tr>
<tr>
<td>E4</td>
<td>Bike Lane</td>
<td>Howell Mill Road</td>
<td>Huff Road</td>
<td>700</td>
<td>$16,928</td>
<td>$4,212</td>
<td>$3,386</td>
<td>$24,546</td>
</tr>
<tr>
<td>E5</td>
<td>Shared Lane Marking</td>
<td>Howell Mill Road</td>
<td>14th Street</td>
<td>2,390</td>
<td>$15,734</td>
<td>$3,914</td>
<td>$3,147</td>
<td>$22,813</td>
</tr>
<tr>
<td>E6</td>
<td>Bike Lane</td>
<td>Marietta Street</td>
<td>Howell Mill Road</td>
<td>1,720</td>
<td>$41,595</td>
<td>$10,399</td>
<td>$8,619</td>
<td>$60,313</td>
</tr>
<tr>
<td>E7</td>
<td>Bike Lane</td>
<td>Marietta Street</td>
<td>Northside Drive</td>
<td>1,596</td>
<td>$33,459</td>
<td>$8,365</td>
<td>$6,692</td>
<td>$48,515</td>
</tr>
<tr>
<td>E8</td>
<td>Bike Lane</td>
<td>Marietta Street</td>
<td>Means Street</td>
<td>1,240</td>
<td>$29,987</td>
<td>$7,497</td>
<td>$5,997</td>
<td>$43,482</td>
</tr>
<tr>
<td>E9</td>
<td>Multi-Use Path</td>
<td>Tech Parkway</td>
<td>North Avenue</td>
<td>4,330</td>
<td>$101,470</td>
<td>$25,367</td>
<td>$20,294</td>
<td>$147,131</td>
</tr>
<tr>
<td>E10</td>
<td>Buffered Bike Lane</td>
<td>Marietta Street</td>
<td>North Avenue Bridge</td>
<td>170</td>
<td>$5,140</td>
<td>$1,285</td>
<td>$1,028</td>
<td>$7,453</td>
</tr>
<tr>
<td>E11</td>
<td>Bike Lane</td>
<td>Marietta Street</td>
<td>North Avenue Bridge</td>
<td>2,460</td>
<td>$51,152</td>
<td>$12,788</td>
<td>$10,230</td>
<td>$74,170</td>
</tr>
<tr>
<td>E12</td>
<td>Cycle Track</td>
<td>Luckie Street</td>
<td>North Avenue</td>
<td>1,260</td>
<td>$185,625</td>
<td>$46,406</td>
<td>$37,125</td>
<td>$269,156</td>
</tr>
<tr>
<td>E13</td>
<td>Bike Lane</td>
<td>Marietta Street</td>
<td>Ivan Allen Jr Boulevard</td>
<td>330</td>
<td>$7,981</td>
<td>$1,995</td>
<td>$1,596</td>
<td>$11,772</td>
</tr>
<tr>
<td>E14</td>
<td>Bike Lane</td>
<td>Marietta Street</td>
<td>Simpson Street</td>
<td>840</td>
<td>$20,314</td>
<td>$5,079</td>
<td>$4,063</td>
<td>$29,456</td>
</tr>
<tr>
<td>E15</td>
<td>Cycle Track</td>
<td>Luckie Street</td>
<td>Pine Street</td>
<td>2,240</td>
<td>$123,396</td>
<td>$30,849</td>
<td>$24,679</td>
<td>$178,914</td>
</tr>
<tr>
<td>E16</td>
<td>Contra-Flow Lane</td>
<td>Walton Street</td>
<td>Centennial Olympic Park Drive</td>
<td>1,620</td>
<td>$75,010</td>
<td>$18,752</td>
<td>$15,002</td>
<td>$108,764</td>
</tr>
<tr>
<td>E17</td>
<td>Shared Lane Marking</td>
<td>Euclid Avenue</td>
<td>Edgewood Avenue</td>
<td>3,300</td>
<td>$7,964</td>
<td>$1,991</td>
<td>$1,593</td>
<td>$11,448</td>
</tr>
<tr>
<td>E18</td>
<td>Shared Lane Marking</td>
<td>Euclid Avenue</td>
<td>Alt Avenue</td>
<td>360</td>
<td>$869</td>
<td>$217</td>
<td>$174</td>
<td>$1,260</td>
</tr>
<tr>
<td>E19</td>
<td>Bike Lane</td>
<td>Euclid Avenue</td>
<td>Austin Avenue</td>
<td>1,380</td>
<td>$14,053</td>
<td>$3,508</td>
<td>$2,807</td>
<td>$20,347</td>
</tr>
<tr>
<td>E20</td>
<td>Shared Lane Marking</td>
<td>Hampton Street</td>
<td>Marietta Street</td>
<td>230</td>
<td>$603</td>
<td>$151</td>
<td>$121</td>
<td>$875</td>
</tr>
<tr>
<td>E21</td>
<td>Shared Lane Marking</td>
<td>Hampton Street</td>
<td>3rd Street</td>
<td>936</td>
<td>$2,244</td>
<td>$563</td>
<td>$449</td>
<td>$3,254</td>
</tr>
<tr>
<td>E22</td>
<td>Bike Lane</td>
<td>Brady Avenue</td>
<td>Howell Mill Road</td>
<td>1,100</td>
<td>$14,502</td>
<td>$3,625</td>
<td>$2,900</td>
<td>$21,027</td>
</tr>
<tr>
<td>E23</td>
<td>Bike Lane</td>
<td>Brady Avenue</td>
<td>10th Street</td>
<td>730</td>
<td>$9,228</td>
<td>$2,307</td>
<td>$1,846</td>
<td>$13,381</td>
</tr>
<tr>
<td>E24</td>
<td>Bike Lane</td>
<td>Brady Avenue</td>
<td>West Marietta</td>
<td>1,020</td>
<td>$108,986</td>
<td>$27,247</td>
<td>$21,797</td>
<td>$158,030</td>
</tr>
<tr>
<td>E25</td>
<td>Cycle Track</td>
<td>Baker Street</td>
<td>Luckie Street</td>
<td>2,630</td>
<td>$213,039</td>
<td>$53,260</td>
<td>$42,608</td>
<td>$308,907</td>
</tr>
<tr>
<td>E26</td>
<td>Cycle Track</td>
<td>Centennial Olympic Park Drive</td>
<td>Ivan Allen Jr Boulevard</td>
<td>980</td>
<td>$2,365</td>
<td>$591</td>
<td>$473</td>
<td>$3,429</td>
</tr>
<tr>
<td>E27</td>
<td>Shared Lane Marking</td>
<td>Park Avenue</td>
<td>Marietta Street</td>
<td>980</td>
<td>$2,365</td>
<td>$591</td>
<td>$473</td>
<td>$3,429</td>
</tr>
</tbody>
</table>

Total | **38,189** | **$1,168,640** | **$292,160** | **$233,728** | **$1,694,529**